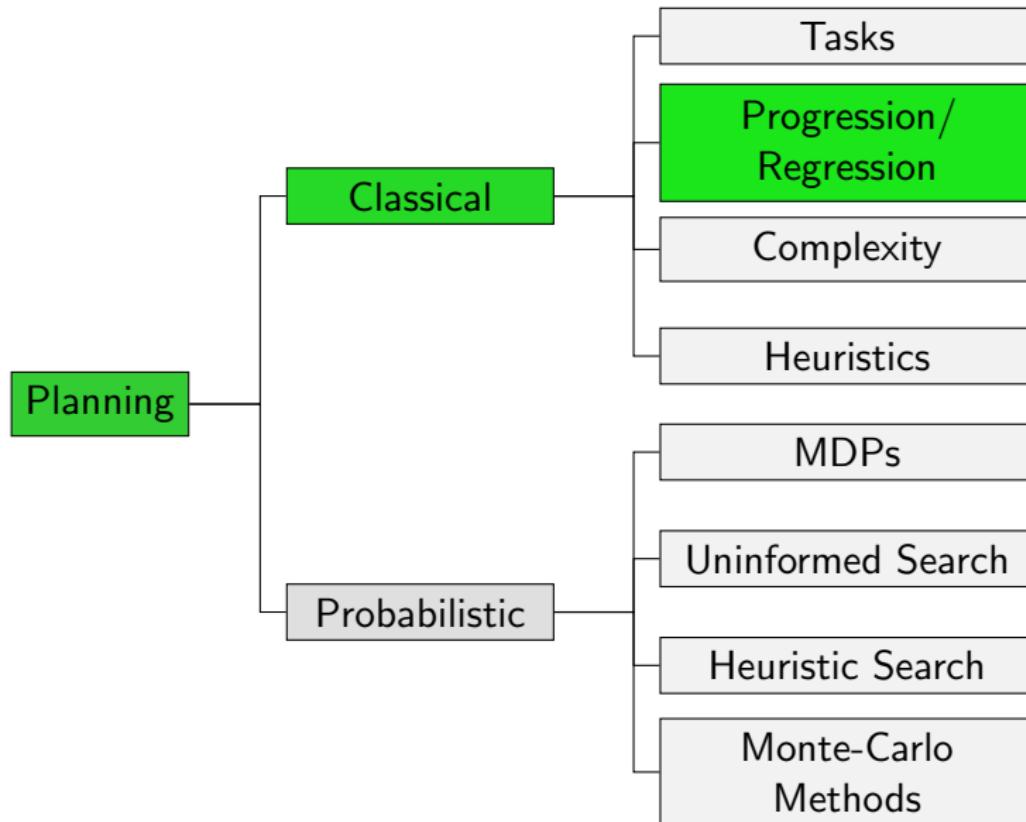


Planning and Optimization


B1. Planning as Search

Gabriele Röger and Thomas Keller

Universität Basel

October 8, 2018

Content of this Course

Introduction

What Do We Mean by Search?

- **Search** is a very generic term.
 - ~~> Every algorithm that tries out various alternatives can be said to “search” in some way.
- Here, we mean **classical state-space search** algorithms.
 - **Search nodes** are expanded to generate **successor nodes**.
 - **Examples:** breadth-first search, greedy best-first search, weighted A*, A*, ...
- To be brief, we just say **search** in the following (not “classical state-space search”).

Planning as Search

- **search**: one of the **big success stories** of AI
- most state-of-the-art planning systems are based on classical heuristic search algorithms
- large part of course focuses on heuristics for planning as search

Reminder: State-Space Search

Need to Catch Up?

- We **assume prior knowledge** of basic search algorithms:
 - uninformed vs. informed
 - satisficing vs. optimal
- If you are not familiar with them, we recommend Chapters 5–19 of the **Foundations of Artificial Intelligence** course at <https://dmi.unibas.ch/de/studium/computer-science-informatik/fs18/lecture-foundations-of-artificial-intelligence/>

Reminder: Interface for Heuristic Search Algorithms

Abstract Interface Needed for Heuristic Search Algorithms

- **init()** \rightsquigarrow returns initial state
- **is_goal(s)** \rightsquigarrow tests if s is a goal state
- **succ(s)** \rightsquigarrow returns all pairs $\langle a, s' \rangle$ with $s \xrightarrow{a} s'$
- **cost(a)** \rightsquigarrow returns cost of action a
- **h(s)** \rightsquigarrow returns heuristic value for state s

\rightsquigarrow Foundations of Artificial Intelligence course, Chapters 6 and 13

State Space vs. Search Space

- Planning tasks induce transition systems (a.k.a. state spaces) with an initial state, labeled transitions and goal states.
- State-space search searches state spaces with an initial state, a successor function and goal states.
 - ↝ looks like an obvious correspondence
- However, in planning as search, the state space being searched **can be different** from the state space of the planning task.
- When we need to make a distinction, we speak of
 - the **state space** of the planning task whose states are called **world states** vs.
 - the **search space** of the search algorithm whose states are called **search states**.

Search-based Planning Algorithm Classification

Satisficing or Optimal Planning?

Must carefully distinguish two different problems:

- **satisficing planning**: any solution is OK
(but cheaper solutions usually preferred)
- **optimal planning**: plans must have minimum cost

Both are often solved by search, but:

- details are **very different**
- almost **no overlap** between good techniques for satisficing planning and good techniques for optimal planning
- many tasks that are trivial to solve for satisficing planners are impossibly hard for optimal planners

Planning as Search

How to apply search to planning? \rightsquigarrow many choices to make!

Choice 1: Search Direction

- **progression:** forward from initial state to goal
- **regression:** backward from goal states to initial state
- **bidirectional search**

Planning as Search

How to apply search to planning? \rightsquigarrow many choices to make!

Choice 2: Search Space Representation

- search states are identical to **world states**
 \rightsquigarrow **explicit-state search**
- search states correspond to **sets of world states**
 \rightsquigarrow **symbolic search**

Planning as Search

How to apply search to planning? \rightsquigarrow many choices to make!

Choice 3: Search Algorithm

- **uninformed search:**
depth-first, breadth-first, iterative depth-first, ...
- **heuristic search (systematic):**
greedy best-first, A*, weighted A*, IDA*, ...
- **heuristic search (local):**
hill-climbing, simulated annealing, beam search, ...

Planning as Search

How to apply search to planning? \rightsquigarrow **many choices to make!**

Choice 4: Search Control

- **heuristics** for informed search algorithms
- **pruning techniques:** invariants, symmetry elimination, partial-order reduction, helpful actions pruning, ...

Our Plan for the Following Weeks

- progression search ↵ Chapter B2
- regression search ↵ Chapters B3–B5
- heuristics for classical planning ↵ Parts C–F

Summary

Summary

- (Classical) **search** is a very important planning approach.
- Search-based planning algorithms differ along many dimensions, including
 - **search direction** (forward, backward)
 - **what each search state represents**
(a world state, a set of world states)