
Planning and Optimization
A7. Invariants, Mutexes and Finite Domain Representation

Gabriele Röger and Thomas Keller

Universität Basel

October 8, 2018

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 1 / 32

Planning and Optimization
October 8, 2018 — A7. Invariants, Mutexes and Finite Domain Representation

A7.1 Invariants

A7.2 Mutexes

A7.3 FDR Planning Tasks

A7.4 FDR Task Semantics

A7.5 SAS+ Planning Tasks

A7.6 Summary

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 2 / 32

Content of this Course

Planning

Classical

Tasks

Progression/
Regression

Complexity

Heuristics

Probabilistic

MDPs

Uninformed Search

Heuristic Search

Monte-Carlo
Methods

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 3 / 32

A7. Invariants, Mutexes and Finite Domain Representation Invariants

A7.1 Invariants

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 4 / 32

A7. Invariants, Mutexes and Finite Domain Representation Invariants

Invariants

I When we as humans reason about planning tasks, we
implicitly make use of “obvious” properties of these tasks.

I Example: we are never in two places at the same time

I We can represent such properties as logical formulas ϕ
that are true in all reachable states.

I Example: ϕ = ¬(at-uni ∧ at-home)

I Such formulas are called invariants of the task.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 5 / 32

A7. Invariants, Mutexes and Finite Domain Representation Invariants

Invariants: Definition

Definition (Invariant)

An invariant of a planning task Π with state variables V
is a logical formula ϕ over V such that s |= ϕ
for all reachable states s of Π.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 6 / 32

A7. Invariants, Mutexes and Finite Domain Representation Invariants

Computing Invariants

I Theoretically, testing if an arbitrary formula ϕ
is an invariant is as hard as planning itself.
 proof idea: a planning task is unsolvable iff

the negation of its goal is an invariant

I Still, many practical invariant synthesis algorithms exist.

I To remain efficient (= polynomial-time), these algorithms
only compute a subset of all useful invariants.
 sound, but not complete

I Empirically, they tend to at least find the “obvious”
invariants of a planning task.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 7 / 32

A7. Invariants, Mutexes and Finite Domain Representation Invariants

Exploiting Invariants

Invariants have many uses in planning:

I Regression search:
Prune states that violate (are inconsistent with) invariants.

I Planning as satisfiability:
Add invariants to a SAT encoding of a planning task
to get tighter constraints.

I Reformulation:
Derive a more compact state space representation
(i.e., with fewer unreachable states).

We now briefly discuss the last point because it is important
for planning tasks in finite-domain representation,
introduced in the following chapter.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 8 / 32

A7. Invariants, Mutexes and Finite Domain Representation Mutexes

A7.2 Mutexes

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 9 / 32

A7. Invariants, Mutexes and Finite Domain Representation Mutexes

Mutexes

Invariants that take the form of binary clauses are called mutexes
because they express that certain variable assignments cannot be
simultaneously true and are hence mutually exclusive.

Example (Blocks World)

The invariant ¬A-on-B ∨ ¬A-on-C states that
A-on-B and A-on-C are mutex.

We say that a larger set of literals is mutually exclusive
if every subset of two literals is a mutex.

Example (Blocks World)

Every pair in {B-on-A,C-on-A,D-on-A,A-clear} is mutex.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 10 / 32

A7. Invariants, Mutexes and Finite Domain Representation Mutexes

Encoding Mutex Groups as Finite-Domain Variables

Let L = {`1, . . . , `n} be mutually exclusive literals
over n different variables VL = {v1, . . . , vn}.
Then the planning task can be rephrased using a single
finite-domain (i.e., non-binary) state variable vL
with n + 1 possible values in place of the n variables in VL:

I n of the possible values represent situations
in which exactly one of the literals in L is true.

I The remaining value represents situations
in which none of the literals in L is true.

I Note: If we can prove that one of the literals in L
must be true in each state (i.e., `1 ∨ · · · ∨ `n is an invariant),
this additional value can be omitted.

In many cases, the reduction in the number of variables
dramatically improves performance of a planning algorithm.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 11 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

A7.3 FDR Planning Tasks

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 12 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

Reminder: Blocks World with Boolean State Variables

Example

s(A-on-B) = F

s(A-on-C) = F

s(A-on-table) = T

s(B-on-A) = T

s(B-on-C) = F

s(B-on-table) = F

s(C-on-A) = F

s(C-on-B) = F

s(C-on-table) = T

 29 = 512 states

A
B

C

Note: it may be useful to add auxiliary state variables like A-clear.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 13 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

Blocks World with Finite-Domain State Variables

Use three finite-domain state variables:

I below-a: {b, c, table}
I below-b: {a, c, table}
I below-c: {a, b, table}

Example

s(below-a) = table

s(below-b) = a

s(below-c) = table

 33 = 27 states

A
B

C

Note: it may be useful to add auxiliary state variables like above-a.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 14 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

Finite-Domain State Variables

Definition (Finite-Domain State Variable)

A finite-domain state variable is a symbol v
with an associated finite domain, i.e., a non-empty finite set.

We write dom(v) for the domain of v .

Example (Blocks World)

v = above-a, dom(above-a) = {b, c, nothing}
This state variable encodes the same information as the
propositional variables B-on-A, C-on-A and A-clear.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 15 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

Finite-Domain States

Definition (Finite-Domain State)

Let V be a finite set of finite-domain state variables.

A state over V is an assignment s : V →
⋃

v∈V dom(v)
such that s(v) ∈ dom(v) for all v ∈ V .

Example (Blocks World)

s = {above-a 7→ nothing, above-b 7→ a, above-c 7→ b,
below-a 7→ b, below-b 7→ c, below-c 7→ table}

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 16 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

Finite-Domain Formulas

Definition (Finite-Domain Formula)

Logical formulas over finite-domain state variables V
are defined identically to the propositional case,
except that instead of atomic formulas of the form v ′ ∈ V ′

with propositional state variables V ′, there are atomic formulas
of the form v = d , where v ∈ V and d ∈ dom(v).

Example (Blocks World)

The formula (above-a = nothing) ∨ ¬(below-b = c)
corresponds to the formula A-clear ∨ ¬B-on-C.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 17 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

Finite-Domain Effects

Definition (Finite-Domain Effect)

Effects over finite-domain state variables V
are defined identically to the propositional case,
except that instead of atomic effects of the form v ′ and ¬v ′

with propositional state variables v ′ ∈ V ′, there are atomic effects
of the form v := d , where v ∈ V and d ∈ dom(v).

Example (Blocks World)

The effect
(below-a := table) ∧ ((above-b = a) B (above-b := nothing))
corresponds to the effect
A-on-table∧¬A-on-B∧¬A-on-C∧(A-on-B B (B-clear∧¬A-on-B)).

 finite-domain operators, effect conditions etc. follow

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 18 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Planning Tasks

Planning Tasks in Finite-Domain Representation

Definition (Planning Task in Finite-Domain Representation)

A planning task in finite-domain representation
or FDR planning task is a 4-tuple Π = 〈V , I ,O, γ〉 where

I V is a finite set of finite-domain state variables,

I I is a state over V called the initial state,

I O is a finite set of finite-domain operators over V , and

I γ is a formula over V called the goal.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 19 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

A7.4 FDR Task Semantics

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 20 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

FDR Task Semantics: Introduction

I We have now defined what FDR tasks look like.

I We still have to define their semantics.

I Because they are similar to propositional planning tasks,
we can define their semantics in a very similar way.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 21 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

Direct vs. Compilation Semantics

We describe two ways of defining semantics for FDR tasks:

I directly, mirroring our definitions for propositional tasks

I by compilation to propositional tasks

Comparison of the semantics:

I The two semantics are equivalent in terms of the reachable
state space and hence in terms of the set of solutions.
(We will not prove this.)

I They are not equivalent w.r.t. the set of all states.

Where the distinction matters, we use the direct semantics
in this course unless stated otherwise.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 22 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

Conflicting Effects

I As with propositional planning tasks, there is a subtlety:
what should an effect of the form v := a ∧ v := b mean?

I For FDR tasks, the common convention is to make this illegal,
i.e., to make an operator inapplicable if it would lead to
conflicting effects.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 23 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

Consistency Condition and Applicability

Definition (Consistency Condition)

Let e be an effect over finite-domain state variables V .

The consistency condition for e, consist(e) is defined as∧
v∈V

∧
d ,d ′∈dom(v),d 6=d ′

¬(effcond(v := d , e) ∧ effcond(v := d ′, e)).

Definition (Applicable FDR Operator)

An FDR operator o is applicable in a state s
if s |= pre(o) ∧ consist(eff(o)).

The definitions of sJoK etc. then follow in the natural way.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 24 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

Reminder: Semantics of Propositional Planning Tasks

Reminder from Chapter A4:

Definition (Transition System Induced by a Prop. Planning Task)

The propositional planning task Π = 〈V , I ,O, γ〉 induces
the transition system T (Π) = 〈S , L, c ,T , s0,S?〉, where

I S is the set of all valuations of V ,

I L is the set of operators O,

I c(o) = cost(o) for all operators o ∈ O,

I T = {〈s, o, s ′〉 | s ∈ S , o applicable in s, s ′ = sJoK},
I s0 = I , and

I S? = {s ∈ S | s |= γ}.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 25 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

Semantics of Planning Tasks

A definition that works for both types of planning tasks:

Definition (Transition System Induced by a Planning Task)

The planning task Π = 〈V , I ,O, γ〉 induces
the transition system T (Π) = 〈S , L, c ,T , s0,S?〉, where

I S is the set of states over V ,

I L is the set of operators O,

I c(o) = cost(o) for all operators o ∈ O,

I T = {〈s, o, s ′〉 | s ∈ S , o applicable in s, s ′ = sJoK},
I s0 = I , and

I S? = {s ∈ S | s |= γ}.

Planning task here refers to either a propositional or FDR task.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 26 / 32

A7. Invariants, Mutexes and Finite Domain Representation FDR Task Semantics

Compilation Semantics

Definition (Induced Propositional Planning Task)

Let Π = 〈V , I ,O, γ〉 be an FDR planning task.
The induced propositional planning task Π′ is the (regular)
planning task Π′ = 〈V ′, I ′,O ′, γ′〉, where

I V ′ = {〈v , d〉 | v ∈ V , d ∈ dom(v)}
I I ′(〈v , d〉) = T iff I (v) = d
I O ′ and γ′ are obtained from O and γ by

I replacing each operator precondition pre(o)
by pre(o) ∧ consist(eff(o)), and then

I replacing each atomic formula v = d by the proposition 〈v , d〉,
I replacing each atomic effect v := d by the effect
〈v , d〉 ∧

∧
d′∈dom(v)\{d} ¬〈v , d ′〉.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 27 / 32

A7. Invariants, Mutexes and Finite Domain Representation SAS+ Planning Tasks

A7.5 SAS+ Planning Tasks

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 28 / 32

A7. Invariants, Mutexes and Finite Domain Representation SAS+ Planning Tasks

SAS+ Planning Tasks

Definition (SAS+ Planning Task)

An FDR planning task Π = 〈V , I ,O, γ〉 is called
a SAS+ planning task if

I there are no conditional effects in O, and

I all operator preconditions in O and the goal formula γ
are conjunctions of atoms.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 29 / 32

A7. Invariants, Mutexes and Finite Domain Representation SAS+ Planning Tasks

SAS+ vs. STRIPS

I SAS+ is the analogue of STRIPS planning tasks for FDR

I induced propositional planning task of a SAS+ task
is a STRIPS planning task after simplification
(consistency conditions simplify to ⊥ or >)

I FDR tasks obtained by mutex-based reformulation
of STRIPS planning tasks are SAS+ tasks

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 30 / 32

A7. Invariants, Mutexes and Finite Domain Representation Summary

A7.6 Summary

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 31 / 32

A7. Invariants, Mutexes and Finite Domain Representation Summary

Summary

I Invariants are common properties of all reachable states,
expressed as logical formulas.

I Mutexes are invariants that express that certain pairs
of literals are mutually exclusive.

I Planning tasks in finite-domain representation (FDR)
are an alternative to propositional planning tasks.

I FDR tasks are often more compact (have fewer states).

I This makes many planning algorithms more efficient
when working with a finite-domain representation.

I SAS+ tasks are a restricted form of FDR tasks where
only conjunctions of atoms are allowed in the preconditions,
effects and goal. No conditional effects are allowed.

G. Röger, T. Keller (Universität Basel) Planning and Optimization October 8, 2018 32 / 32

	Invariants
	Mutexes
	FDR Planning Tasks
	FDR Task Semantics
	SAS+ Planning Tasks
	Summary

