

Planning and Optimization October 8, 2018 — A7. Invariants, Mutexes and Finite Domain Representation

A7.1 Invariants			
A7.2 Mutexes			
A7.3 FDR Planning Tasks			
A7.4 FDR Task Semantics			
A7.5 SAS ⁺ Planning Tasks			
A7.6 Summary			
G. Röger, T. Keller (Universität Basel)	Planning and Optimization	October 8, 2018	2 / 32

Invariants

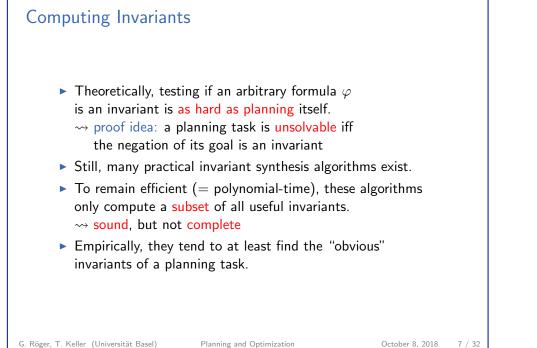
- ▶ When we as humans reason about planning tasks, we implicitly make use of "obvious" properties of these tasks.
 - Example: we are never in two places at the same time

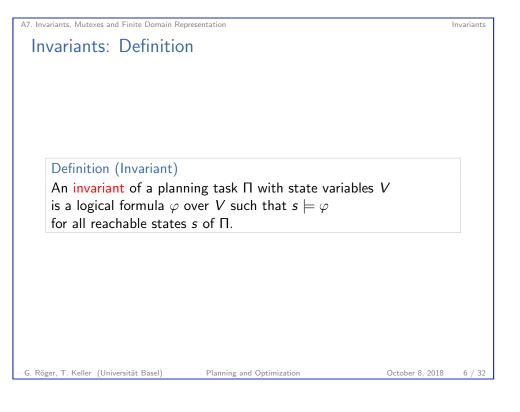
Planning and Optimization

- We can represent such properties as logical formulas φ that are true in all reachable states.
 - Example: $\varphi = \neg (at\text{-}uni \land at\text{-}home)$
- Such formulas are called invariants of the task.

G. Röger, T. Keller (Universität Basel)

A7. Invariants, Mutexes and Finite Domain Representation





A7. Invariants. Mutexes and Finite Domain Representation

Exploiting Invariants

Invariants have many uses in planning:

► Regression search:

Prune states that violate (are inconsistent with) invariants.

- Planning as satisfiability: Add invariants to a SAT encoding of a planning task
- to get tighter constraints. ▶ Reformulation:

Derive a more compact state space representation (i.e., with fewer unreachable states).

We now briefly discuss the last point because it is important for planning tasks in finite-domain representation, introduced in the following chapter.

October 8, 2018

5 / 32

Invariants

Invariants

Invariants

Mutexes

A7.2 Mutexes

G. Röger, T. Keller (Universität Basel)

A7. Invariants, Mutexes and Finite Domain Representation

Encoding Mutex Groups as Finite-Domain Variables

Planning and Optimization

Let $L = \{\ell_1, \ldots, \ell_n\}$ be mutually exclusive literals over *n* different variables $V_L = \{v_1, \ldots, v_n\}$.

Then the planning task can be rephrased using a single finite-domain (i.e., non-binary) state variable v_L with n + 1 possible values in place of the *n* variables in V_L :

- n of the possible values represent situations in which exactly one of the literals in L is true.
- The remaining value represents situations in which none of the literals in L is true.
 - Note: If we can prove that one of the literals in L must be true in each state (i.e., ℓ₁ ∨ · · · ∨ ℓ_n is an invariant), this additional value can be omitted.

In many cases, the reduction in the number of variables dramatically improves performance of a planning algorithm.

October 8, 2018

9 / 32

Mutexes

A7. Invariants, Mutexes and Finite Domain Representation

Mutexes

Invariants that take the form of binary clauses are called mutexes because they express that certain variable assignments cannot be simultaneously true and are hence mutually exclusive.

Example (Blocks World)

The invariant $\neg A$ -on- $B \lor \neg A$ -on-C states that A-on-B and A-on-C are mutex.

We say that a larger set of literals is mutually exclusive if every subset of two literals is a mutex.

Example (Blocks World) Every pair in {*B-on-A*, *C-on-A*, *D-on-A*, *A-clear*} is mutex.

Planning and Optimization

G. Röger, T. Keller (Universität Basel)

October 8, 2018

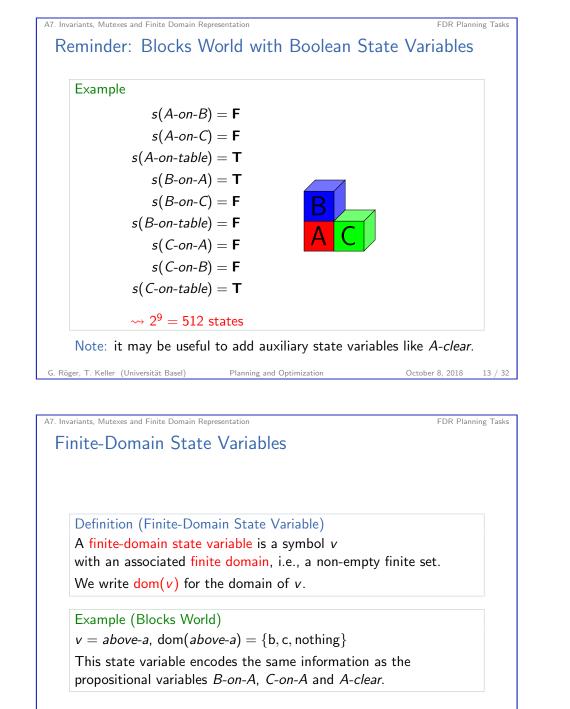
A7. Invariants, Mutexes and Finite Domain Representation

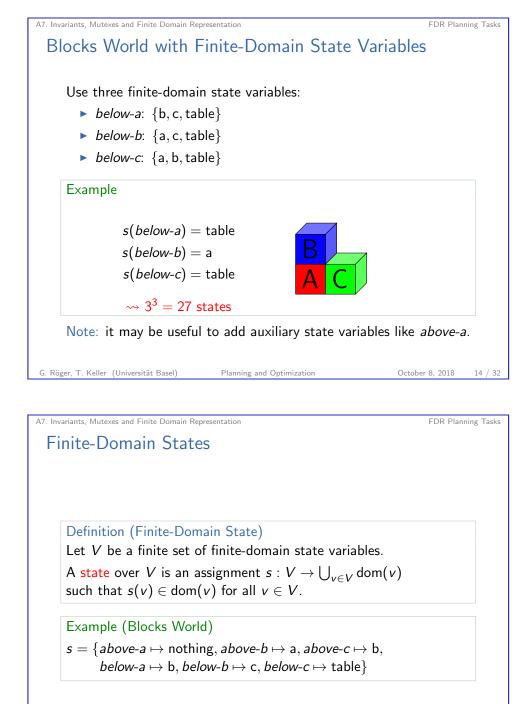
FDR Planning Tasks

10 / 32

A7.3 FDR Planning Tasks

Planning and Optimization





FDR Planning Tasks

Finite-Domain Formulas

Definition (Finite-Domain Formula) Logical formulas over finite-domain state variables Vare defined identically to the propositional case, except that instead of atomic formulas of the form $v' \in V'$

with propositional state variables V', there are atomic formulas of the form v = d, where $v \in V$ and $d \in \text{dom}(v)$.

Planning and Optimization

Example (Blocks World)

The formula $(above-a = \text{nothing}) \lor \neg(below-b = c)$ corresponds to the formula $A-clear \lor \neg B-on-C$.

G. Röger, T. Keller (Universität Basel)

October 8, 2018 17 / 32

A7. Invariants, Mutexes and Finite Domain Representation

FDR Planning Tasks

Planning Tasks in Finite-Domain Representation

Definition (Planning Task in Finite-Domain Representation) A planning task in finite-domain representation or FDR planning task is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where

- or FUR planning task is a 4-tuple II = $\langle V, I, O, \gamma \rangle$ where
- ► *V* is a finite set of finite-domain state variables,
- ► *I* is a state over *V* called the initial state,
- O is a finite set of finite-domain operators over V, and
- γ is a formula over V called the goal.

A7. Invariants, Mutexes and Finite Domain Representation

FDR Planning Tasks

Finite-Domain Effects

Definition (Finite-Domain Effect)

Effects over finite-domain state variables V are defined identically to the propositional case, except that instead of atomic effects of the form v' and $\neg v'$ with propositional state variables $v' \in V'$, there are atomic effects of the form v := d, where $v \in V$ and $d \in \text{dom}(v)$.

Example (Blocks World)

The effect

 $(below-a := table) \land ((above-b = a) \triangleright (above-b := nothing))$ corresponds to the effect A-on-table $\land \neg A$ -on- $B \land \neg A$ -on- $C \land (A$ -on- $B \triangleright (B$ -clear $\land \neg A$ -on-B)).

→ finite-domain operators, effect conditions etc. follow

G. Röger, T. Keller (Universität Basel)

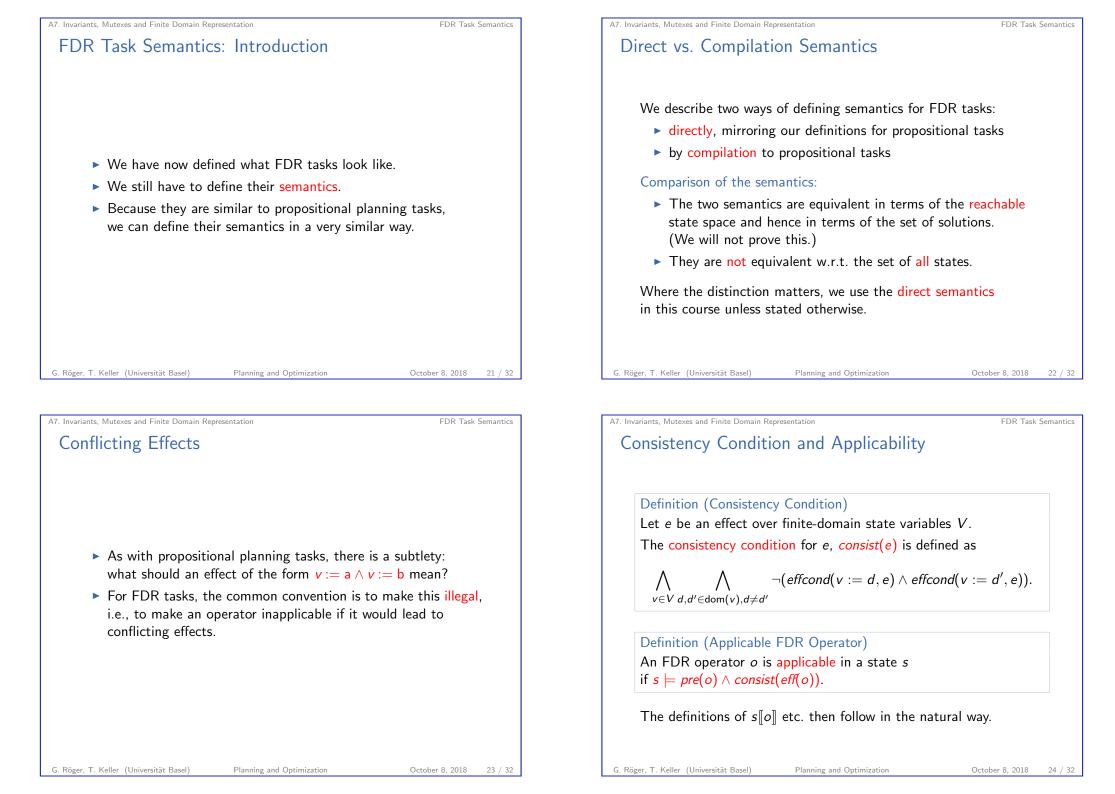
Planning and Optimization

October 8, 2018 18 / 32

A7. Invariants, Mutexes and Finite Domain Representation

FDR Task Semantics

A7.4 FDR Task Semantics



FDR Task Semantics

Reminder: Semantics of Propositional Planning Tasks

Reminder from Chapter A4:

Definition (Transition System Induced by a Prop. Planning Task) The propositional planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_{\star} \rangle$, where

- \blacktriangleright S is the set of all valuations of V.
- \blacktriangleright L is the set of operators O.
- c(o) = cost(o) for all operators $o \in O$,
- $T = \{ \langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s \llbracket o \rrbracket \},$

Planning and Optimization

- \blacktriangleright $s_0 = I$, and
- $\blacktriangleright S_{\star} = \{ s \in S \mid s \models \gamma \}.$

G. Röger, T. Keller (Universität Basel)

October 8, 2018

A7. Invariants, Mutexes and Finite Domain Representation

FDR Task Semantics

October 8, 2018

25 / 32

Definition (Induced Propositional Planning Task) Let $\Pi = \langle V, I, O, \gamma \rangle$ be an FDR planning task. The induced propositional planning task Π' is the (regular) planning task $\Pi' = \langle V', I', O', \gamma' \rangle$, where $\blacktriangleright V' = \{ \langle v, d \rangle \mid v \in V, d \in dom(v) \}$ \blacktriangleright $I'(\langle v, d \rangle) = \mathbf{T}$ iff I(v) = d \blacktriangleright O' and γ' are obtained from O and γ by • replacing each operator precondition pre(o)by $pre(o) \land consist(eff(o))$, and then • replacing each atomic formula v = d by the proposition $\langle v, d \rangle$, • replacing each atomic effect v := d by the effect $\langle v, d \rangle \wedge \bigwedge_{d' \in \operatorname{dom}(v) \setminus \{d\}} \neg \langle v, d' \rangle.$

