
Planning and Optimization
A5. Equivalent Operators and Normal Forms for Effects

Gabriele Röger and Thomas Keller

Universität Basel

October 3, 2018



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Content of this Course

Planning

Classical

Tasks

Progression/
Regression

Complexity

Heuristics

Probabilistic

MDPs

Uninformed Search

Heuristic Search

Monte-Carlo
Methods



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Reminder & Motivation



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Syntax of Effects

Definition (Effect)

Effects over state variables V are inductively defined as follows:

If v ∈ V is a state variable, then v and ¬v are effects
(atomic effect).

If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect >.

If χ is a logical formula and e is an effect,
then (χ B e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Semantics of Effects

effcond(`, e): condition that must be true in the current state
for the effect e to lead to the atomic effect `

add-after-delete semantics: if operator o with effect e is
applicable in state s, the successor state sJoK is defined as:

sJoK(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e) ∧ ¬effcond(v , e)

s(v) if s 6|= effcond(v , e) ∨ effcond(¬v , e)

New notation

If we do not want to consider a precondition,
we also write sJeK for sJ〈>, e〉K.
For a sequence π = 〈o1, . . . , on〉 of operators
that are consecutively applicable in s,
we write sJπK for sJo1KJo2K . . . JonK.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Semantics of Effects

effcond(`, e): condition that must be true in the current state
for the effect e to lead to the atomic effect `

add-after-delete semantics: if operator o with effect e is
applicable in state s, the successor state sJoK is defined as:

sJoK(v) =


T if s |= effcond(v , e)

F if s |= effcond(¬v , e) ∧ ¬effcond(v , e)

s(v) if s 6|= effcond(v , e) ∨ effcond(¬v , e)

New notation

If we do not want to consider a precondition,
we also write sJeK for sJ〈>, e〉K.
For a sequence π = 〈o1, . . . , on〉 of operators
that are consecutively applicable in s,
we write sJπK for sJo1KJo2K . . . JonK.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and propositional planning tasks.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Equivalence Transformations



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and e ′ over state variables V are equivalent,
written e ≡ e ′, if sJeK = sJe ′K for all states s.

Definition (Equivalent Operators)

Two operators o and o ′ over state variables V are equivalent,
written o ≡ o ′, if cost(o) = cost(o ′) and for all states s, s ′ over V ,

o induces the transition s
o−→ s ′ iff o ′ induces the transition s

o′
−→ s ′.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Equivalence of Operators and Effects: Theorem

Theorem

Let o and o ′ be operators with pre(o) ≡ pre(o ′), eff(o) ≡ eff(o ′)
and cost(o) = cost(o ′). Then o ≡ o ′.

Note: The converse is not true. (Why not?)



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Equivalence Transformations for Effects

e1 ∧ e2 ≡ e2 ∧ e1 (1)

(e1 ∧ · · · ∧ en) ∧ (e′
1 ∧ · · · ∧ e′

m) ≡ e1 ∧ · · · ∧ en ∧ e′
1 ∧ · · · ∧ e′

m (2)

> ∧ e ≡ e (3)

χ B e ≡ χ′ B e if χ ≡ χ′ (4)

> B e ≡ e (5)

⊥ B e ≡ > (6)

χ1 B (χ2 B e) ≡ (χ1 ∧ χ2) B e (7)

χ B (e1 ∧ · · · ∧ en) ≡ (χ B e1) ∧ · · · ∧ (χ B en) (8)

(χ1 B e) ∧ (χ2 B e) ≡ (χ1 ∨ χ2) B e (9)



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Conflict-Free Effects



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Conflict-Freeness: Motivation

The add-after-delete semantics makes effects like
(aB c) ∧ (b B ¬c) somewhat unintuitive to interpret.

 What happens in states where a ∧ b is true?

It would be nicer if effcond(¬v , e) were always
the condition under which e makes v false
(but because of add-after-delete, it is not).

 introduce a normal form where the “complicated case”
of add-after-delete semantics never arises



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Conflict-Free Effects

Definition (Conflict-Free)

An effect e is called conflict-free if effcond(v , e) ∧ effcond(¬v , e)
is unsatisfiable for all state variables v .

An operator o is called conflict-free if eff(o) is conflict-free.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Testing if Effects are Conflict-Free

In general, testing whether an effect is conflict-free
is a coNP-complete problem. (Why?)

However, we do not usually need such a test. Instead, we can
produce an equivalent conflict-free effect in polynomial time.

Algorithm: given effect e, replace each atomic effect
of the form ¬v by (¬effcond(v , e) B ¬v).
The resulting effect e ′ is conflict-free and e ≡ e ′. (Why?)



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Flat Effects



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Flat Effects: Motivation

CNF and DNF limit the nesting of connectives
in propositional logic.

For example, a CNF formula is

a conjunction of 0 or more subformulas,
each of which is a disjunction of 0 or more subformulas,
each of which is a literal.

Similarly, we can define a normal form that limits
the nesting of effects.

This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Flat Effect

Definition (Flat Effect)

An effect e is flat if it is:

a conjunctive effect

whose conjuncts are conditional effects

whose subeffects are atomic effects, and

no atomic effect occurs in e multiple times.

An operator o is flat if eff(o) is flat.

Note: non-conjunctive effects can be considered
as conjunctive effects with 1 conjunct



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Flat Effect: Example

Example

Consider the effect

c ∧ (a B (¬b ∧ (c B (b ∧ ¬d ∧ ¬a)))) ∧ (¬b B¬a)

An equivalent flat (and conflict-free) effect is

(> B c) ∧
((a ∧ ¬c) B ¬b) ∧

((a ∧ c) B b) ∧
((a ∧ c) B ¬d) ∧

((¬b ∨ (a ∧ c)) B ¬a)

Note: for simplicity, we will often write (> B `) as `, i.e.,
omit trivial effect conditions. We will still consider such effects
to be in normal form.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Producing Flat Effects

Theorem

For every effect, an equivalent flat effect and an equivalent flat,
conflict-free effect can be computed in polynomial time.

Proof Sketch.

Every effect e over variables V is equivalent to∧
v∈V (effcond(v , e) B v) ∧

∧
v∈V (effcond(¬v , e) B ¬v),

which is a flat effect.

For conflict-free and flat, use effcond(¬v , e) ∧ ¬effcond(v , e)
instead of effcond(¬v , e).

In both cases, conjuncts of the form (χ B `) where χ ≡ ⊥
can be omitted to simplify the effect.



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Summary



Reminder & Motivation Equivalence Transformations Conflict-Free Effects Flat Effects Summary

Summary

Effect equivalences can be used to simplify operator effects.

In conflict-free effects, the “complicated case” in the
add-after-delete semantics of operators does not arise.

For flat effects, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

For flat, conflict-free effects, it is easy to determine
the condition under which a given literal is made true
by applying the effect in a given state.

Every effect can be transformed into an equivalent
flat and conflict-free effect in polynomial time.


	Reminder & Motivation
	Equivalence Transformations
	Conflict-Free Effects
	Flat Effects
	Summary

