Planning and Optimization

A5. Equivalent Operators and Normal Forms for Effects

Gabriele Roger and Thomas Keller

Universitat Basel

October 3, 2018



Content of this Course

Progression/

~| Complexity |

—I Heuristics |

= MDPs |

—| Uninformed Search |

— Probabilistic ——

—I Heuristic Search |

Monte-Carlo
Methods




Reminder & Motivation



Reminder & Motivation lence Transformations e ct-Free Effects

0e00

Syntax of Effects

Definition (Effect)
Effects over state variables V are inductively defined as follows:

m If v € V is a state variable, then v and —v are effects
(atomic effect).

mIf e,..., e, are effects, then (e; A\ -+ A e,) is an effect
(conjunctive effect).
The special case with n = 0 is the empty effect T.

m If x is a logical formula and e is an effect,
then (x > e) is an effect (conditional effect).

Arbitrary nesting of conjunctive and conditional effects
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Semantics of Effects

m effcond(?, e): condition that must be true in the current state
for the effect e to lead to the atomic effect ¢

m add-after-delete semantics: if operator o with effect e is
applicable in state s, the successor state s[o] is defined as:

T if s |= effcond(v, e)
F if s |= effcond(—v, e) A\ —effcond(v, e)
s(v) if s [ effcond(v, e) V effcond(—v, e)

s[o](v) =
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Semantics of Effects

m effcond(?, e): condition that must be true in the current state
for the effect e to lead to the atomic effect ¢

m add-after-delete semantics: if operator o with effect e is
applicable in state s, the successor state s[o] is defined as:

T if s |= effcond(v, e)
F if s |= effcond(—v, e) A\ —effcond(v, e)
s(v) if s [ effcond(v, e) V effcond(—v, e)

s[o](v) =

m New notation
m If we do not want to consider a precondition,
we also write s[e] for s[(T,e)].
m For a sequence m = (oy, ..., 0,) of operators
that are consecutively applicable in s,
we write s for s[o1][o2] - - [0n]-
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Motivation

Similarly to normal forms in propositional logic (DNF, CNF, NNF),
we can define normal forms for effects, operators
and propositional planning tasks.

This is useful because algorithms (and proofs) then only
need to deal with effects, operators and tasks in normal form.
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Equivalence of Operators and Effects: Definition

Definition (Equivalent Effects)

Two effects e and €’ over state variables V are equivalent,
written e = €', if s[e] = s[[¢'] for all states s.

Definition (Equivalent Operators)

Two operators o and o’ over state variables V are equivalent,
written o = 0/, if cost(o) = cost(0’) and for all states s, s’ over V,

/
o induces the transition s = s’ iff o’ induces the transition s = s’ )
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Equivalence of Operators and Effects: Theorem

Let 0 and o’ be operators with pre(o) = pre(0’), eff(o) = eff{0’)
and cost(o) = cost(o'). Then o = o’.

Note: The converse is not true. (Why not?)
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Equivalence Transformations for Effects

egtNe = eNe
(s A Nep))AN(EfA-Nep) = es A~ Ae, ANefA---Nel

TAhe = e
x>e = xD>e if x =%
T>e =e
l>e=T
x1>(xar>e) = (aAxe)>e
X>(etA---ANey) = (x>e)A--A(xr>e)
ae)Alre) = (xaVx)>e

Summar
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Conflict-Freeness: Motivation

m The add-after-delete semantics makes effects like
(at> ¢) A (b> —c) somewhat unintuitive to interpret.

~> What happens in states where a A b is true?

m It would be nicer if effcond(—v, e) were always
the condition under which e makes v false
(but because of add-after-delete, it is not).

~> introduce a normal form where the “complicated case”
of add-after-delete semantics never arises
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Conflict-Free Effects

Definition (Conflict-Free)

An effect e is called conflict-free if effcond(v, e) A effcond(—v, )
is unsatisfiable for all state variables v.

An operator o is called conflict-free if eff0) is conflict-free.
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Testing if Effects are Conflict-Free

m In general, testing whether an effect is conflict-free
is a coNP-complete problem. (Why?)
m However, we do not usually need such a test. Instead, we can
produce an equivalent conflict-free effect in polynomial time.
m Algorithm: given effect e, replace each atomic effect

of the form —v by (—effcond(v, ) > —v).
The resulting effect €’ is conflict-free and e = €’. (Why?)
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CNF and DNF limit the nesting of connectives

in propositional logic.

For example, a CNF formula is
m a conjunction of 0 or more subformulas,
m each of which is a disjunction of 0 or more subformulas,
m each of which is a literal.

Similarly, we can define a normal form that limits

the nesting of effects.

This is useful because we then do not have to consider
arbitrarily structured effects, e.g., when representing them
in a planning algorithm.
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Flat Effect

Definition (Flat Effect)
An effect e is flat if it is:

m a conjunctive effect

m whose conjuncts are conditional effects
m whose subeffects are atomic effects, and

m no atomic effect occurs in e multiple times.

An operator o is flat if eff0) is flat.

Note: non-conjunctive effects can be considered
as conjunctive effects with 1 conjunct
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Flat Effect: Example

Consider the effect
cA(a (b A(c> (bA—dA=a)))) A (—b>—a)
An equivalent flat (and conflict-free) effect is

(TeoA
((aA—c) > —b) A
((anc)>b)A
((anc)>—d)A
((=bV(aAc)) > —a)

Note: for simplicity, we will often write (T > () as /, i.e.,
omit trivial effect conditions. We will still consider such effects
to be in normal form.
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Producing Flat Effects

Theorem

For every effect, an equivalent flat effect and an equivalent flat,
conflict-free effect can be computed in polynomial time.

Proof Sketch.

Every effect e over variables V is equivalent to
Avcv(effcond(v,e) > v) A\ ¢y (effcond(—v, e) > —v),
which is a flat effect.

| A\

For conflict-free and flat, use effcond(—v, e) A —effcond(v, e)
instead of effcond(—v, e).

In both cases, conjuncts of the form (x > ¢) where xy = L
can be omitted to simplify the effect.

N
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Summary

m Effect equivalences can be used to simplify operator effects.

m In conflict-free effects, the “complicated case” in the
add-after-delete semantics of operators does not arise.

m For flat effects, the only permitted nesting
is atomic effects within conditional effects within
conjunctive effects, and all atomic effects must be distinct.

m For flat, conflict-free effects, it is easy to determine
the condition under which a given literal is made true
by applying the effect in a given state.

m Every effect can be transformed into an equivalent
flat and conflict-free effect in polynomial time.
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