

Definitions for Finite-Domain Planning Tasks

Definition 1 (Finite-Domain State Variable). *A finite-domain state variable is a symbol v with an associated finite domain, i.e., a non-empty finite set. We write $\text{dom}(v)$ for the domain of v .*

Definition 2 (Logical Formula over Finite-Domain State Variables). *Let V be a set of finite-domain state variables. The logical formulas over V are constructed by finite application of the following rules:*

- \top and \perp are logical formulas.
- For all $v \in V$ and $d \in \text{dom}(v)$, $v = d$ is a logical formula.
- If φ is a logical formula, then so is $\neg\varphi$.
- If φ and ψ are logical formulas, then so are $(\varphi \vee \psi)$ and $(\varphi \wedge \psi)$.

Definition 3 (Finite-Domain State). *Let V be a finite set of finite-domain state variables. A state over V is an assignment $s : V \rightarrow \bigcup_{v \in V} \text{dom}(v)$ such that $s(v) \in \text{dom}(v)$ for all $v \in V$.*

Definition 4 (Semantics of Formulas). *Let V be a finite set of finite-domain variables, s be a state over V and φ be a formula over V . We say that s satisfies φ (written $s \models \varphi$) according to the following definition:*

- $s \models \top$
- $s \not\models \perp$
- $s \models v = d \quad \text{iff} \quad s(v) = d \quad (\text{for all } v \in V, d \in \text{dom}(v))$
- $s \models \neg\varphi \quad \text{iff} \quad s \not\models \varphi$
- $s \models (\varphi \vee \psi) \quad \text{iff} \quad s \models \varphi \text{ or } s \models \psi$
- $s \models (\varphi \wedge \psi) \quad \text{iff} \quad s \models \varphi \text{ and } s \models \psi$

Definition 5 (Finite-Domain Effect). *Effects over finite-domain state variables V are inductively defined as follows:*

- If $v \in V$ is a state variable and $d \in \text{dom}(v)$, then $v := d$ is an (atomic) effect.
- If e_1, \dots, e_n are effects, then $(e_1 \wedge \dots \wedge e_n)$ is an effect.
The special case with $n = 0$ is the empty effect \top .
- If χ is a logical formula over V and e is an effect, then $(\chi \triangleright e)$ is an effect.

Definition 6 (Finite-Domain Operator). *An operator o over finite-domain state variables V consists of a precondition $\text{pre}(o)$ (a logical formula over V), an effect $\text{eff}(o)$ over V , and a cost $\text{cost}(o) \in \mathbb{R}_0^+$.*

Definition 7 (Effect Condition for a Finite-Domain Effect). *Let v be a finite-domain variable and $d \in \text{dom}(v)$. The effect condition $\text{effcond}(v := d, e)$ under which $v := d$ triggers given the effect e is a formula defined as follows:*

- $\text{effcond}(v := d, v := d) = \top$
- $\text{effcond}(v := d, v' := d') = \perp$ for atomic effects with $v' \neq v$ or $d' \neq d$
- $\text{effcond}(v := d, (e_1 \wedge \dots \wedge e_n)) = \text{effcond}(v := d, e_1) \vee \dots \vee \text{effcond}(v := d, e_n)$
- $\text{effcond}(v := d, (\chi \triangleright e)) = \chi \wedge \text{effcond}(v := d, e)$

Definition 8 (Applicable, Resulting State). *Let V be a finite set of finite-domain state variables. Let s be a state over V , and let o be an operator over V . Operator o is applicable in s if*

$$s \models \text{pre}(o) \wedge \bigwedge_{v \in V} \bigwedge_{d, d' \in \text{dom}(v), d \neq d'} \neg(\text{effcond}(v := d, \text{eff}(o)) \wedge \text{effcond}(v := d', \text{eff}(o))).$$

If o is applicable in s , the resulting state of applying o in s , written $s \llbracket o \rrbracket$, is the state s' defined as follows for all $v \in V$:

$$s'(v) = \begin{cases} d & \text{if } s \models \text{effcond}(v := d, \text{eff}(o)) \\ s(v) & \text{if } s \not\models \text{effcond}(v := d, \text{eff}(o)) \text{ for all } d \in \text{dom}(v) \end{cases}$$

Definition 9 (Planning Task in Finite-Domain Representation). *A planning task in finite-domain representation or FDR planning task is a 4-tuple $\Pi = \langle V, I, O, \gamma \rangle$ where*

- V is a finite set of finite-domain state variables,
- I is a state over V called the initial state,
- O is a finite set of finite-domain operators over V , and
- γ is a formula over V called the goal.

Definition 10 (Transition System Induced by a Planning Task). *The planning task $\Pi = \langle V, I, O, \gamma \rangle$ induces the transition system $\mathcal{T}(\Pi) = \langle S, L, c, T, s_0, S_* \rangle$, where*

- S is the set of states over V ,
- L is the set of operators O ,
- $c(o) = \text{cost}(o)$ for all operators $o \in O$,
- $T = \{\langle s, o, s' \rangle \mid s \in S, o \text{ applicable in } s, s' = s \llbracket o \rrbracket\}$,
- $s_0 = I$, and
- $S_* = \{s \in S \mid s \models \gamma\}$.