
Definitions for Finite-Domain Planning Tasks

Definition 1 (Finite-Domain State Variable). A finite-domain state variable is a symbol v with
an associated finite domain, i.e., a non-empty finite set. We write dom(v) for the domain of v.

Definition 2 (Logical Formula over Finite-Domain State Variables). Let V be a set of finite-
domain state variables. The logical formulas over V are constructed by finite application of the
following rules:

• > and ⊥ are logical formulas.

• For all v ∈ V and d ∈ dom(v), v = d is a logical formula.

• If ϕ is a logical formula, then so is ¬ϕ.

• If ϕ and ψ are logical formulas, then so are (ϕ ∨ ψ) and (ϕ ∧ ψ).

Definition 3 (Finite-Domain State). Let V be a finite set of finite-domain state variables. A
state over V is an assignment s : V →

⋃
v∈V dom(v) such that s(v) ∈ dom(v) for all v ∈ V .

Definition 4 (Semantics of Formulas). Let V be a finite set of finite-domain variables, s be a
state over V and ϕ be a formula over V . We say that s satisfies ϕ (written s |= ϕ) according to
the following definition:

• s |= >

• s 6|= ⊥

• s |= v = d iff s(v) = d (for all v ∈ V, d ∈ dom(v))

• v |= ¬ϕ iff v 6|= ϕ

• v |= (ϕ ∨ ψ) iff v |= ϕ or v |= ψ

• v |= (ϕ ∧ ψ) iff v |= ϕ and v |= ψ

Definition 5 (Finite-Domain Effect). Effects over finite-domain state variables V are inductively
defined as follows:

• If v ∈ V is a state variable and d ∈ dom(v), then v := d is an (atomic) effect.

• If e1, . . . , en are effects, then (e1 ∧ · · · ∧ en) is an effect.
The special case with n = 0 is the empty effect >.

• If χ is a logical formula over V and e is an effect, then (χ B e) is an effect.

Definition 6 (Finite-Domain Operator). An operator o over finite-domain state variables V
consists of a precondition pre(o) (a logical formula over V), an effect eff(o) over V , and a cost
cost(o) ∈ R+

0 .

Definition 7 (Effect Condition for a Finite-Domain Effect). Let v be a finite-domain variable and
d ∈ dom(v). The effect condition effcond(v := d, e) under which v := d triggers given the effect e
is a formula defined as follows:

1

• effcond(v := d, v := d) = >

• effcond(v := d, v′ := d′) = ⊥ for atomic effects with v′ 6= v or d′ 6= d

• effcond(v := d, (e1 ∧ · · · ∧ en)) = effcond(v := d, e1) ∨ · · · ∨ effcond(v := d, en)

• effcond(v := d, (χ B e)) = χ ∧ effcond(v := d, e)

Definition 8 (Applicable, Resulting State). Let V be a finite set of finite-domain state variables.
Let s be a state over V , and let o be an operator over V . Operator o is applicable in s if

s |= pre(o) ∧
∧
v∈V

∧
d,d′∈dom(v),d 6=d′

¬(effcond(v := d, eff(o)) ∧ effcond(v := d′, eff(o))).

If o is applicable in s, the resulting state of applying o in s, written sJoK, is the state s′ defined
as follows for all v ∈ V :

s′(v) =

{
d if s |= effcond(v := d, eff(o))

s(v) if s 6|= effcond(v := d, eff(o)) for all d ∈ dom(v)

Definition 9 (Planning Task in Finite-Domain Representation). A planning task in finite-domain
representation or FDR planning task is a 4-tuple Π = 〈V, I,O, γ〉 where

• V is a finite set of finite-domain state variables,

• I is a state over V called the initial state,

• O is a finite set of finite-domain operators over V , and

• γ is a formula over V called the goal.

Definition 10 (Transition System Induced by a Planning Task). The planning task Π = 〈V, I,O, γ〉
induces the transition system T (Π) = 〈S,L, c, T, s0, S?〉, where

• S is the set of states over V ,

• L is the set of operators O,

• c(o) = cost(o) for all operators o ∈ O,

• T = {〈s, o, s′〉 | s ∈ S, o applicable in s, s′ = sJoK},

• s0 = I, and

• S? = {s ∈ S | s |= γ}.

2

