
Planning and Optimization

G. Röger, T. Keller
G. Francès

University of Basel
Fall Semester 2018

Exercise Sheet D
Due: November 13, 2018

The files required for this exercise are in the directory exercise-d of the course repository
(https: // bitbucket. org/ aibasel/ planopt-hs18 ). All paths are relative to this directory.
Update your clone of the repository with hg pull -u to see the files. For the runs with Fast
Downward, set a time limit of 1 minute and a memory limit of 2 GB. Using Linux, such limits
can be set with ulimit -t 60 and ulimit -v 2000000, respectively.

Exercise D.1 (4+2+1+4+2 marks)

(a) Consider the following graph G depicting a simple transition system. Assume that operators
oi have cost 1, while operators o′i have cost 5. As usual, an incoming arrow indicates the
initial state, and goal states are marked by a double rectangle.

G : s1 s2 s3 s4

s5 s6 s7 s8 s9

o2
o′4 o′7

o
′
6o

′
3

o′1 o′5

o9 o11

o′8

o′10

o12

o13

Provide the following graphs:

• a graph G1 which is isomorphic to G but not the same.

• a graph G2 which is graph equivalent to G but not isomorphic to it.

• a graph G3 which is a strict homomorphism of G but not graph equivalent to it.

• a graph G4 which is a non-strict homomorphism of G but not graph equivalent to it.

• a graph G5 that is the transition system induced by the abstraction α that maps states
that are in the column i in the image above to the abstract state si. For example, the
two states in the first column are mapped to an abstract state t1, the two states in the
second column to an abstract state t2, and so on.

• a graph G6 that is the induced transition system of an abstraction β that is a non-trivial
coarsening of α.

• a graph G7 that is the induced transition system of an abstraction γ that is a non-trivial
refinement of β but different from α.

In all graphs, highlight an optimal path and compute its cost. For graphs G1–G4, justify
(one sentence is enough) why they don’t have the property they are not supposed to have,
for example, why G2 is not isomorphic to G. For graph G5, justify why the graph is
an abstraction of G. For graphs G6–G7, justify why the graphs are a coarsening and a
refinement.

(b) Point out the problems with the following ideas for abstraction mappings in the beleaguered
castle domain:

α1: For each card value v there is one abstract state representing all world states where v
is the highest undiscarded value.

α2: A state is mapped to an abstract state by ignoring the suit of the top card on each
tableau pile.



α3: There are up to n = 106 abstract states s0, . . . , sn. A world state s is mapped to the
abstract state sk, where k is the MD5 hash of s modulo 106.

α4: All states s with 0 ≤ h∗(s) < 5 are mapped to the first abstract state, all states s with
5 ≤ h∗(s) < 10 are mapped to the second abstract state, and so on.

(c) Prove the following claim from the lecture: let α1 and α2 be abstractions of a transition
system T . If no label of T affects both T α1 and T α2 , then α1 and α2 are orthogonal.

(d) Let Π be a SAS+ planning task that is not trivially unsolvable and does not contain trivially

inapplicable operators, and let P be a pattern for Π. Prove that T (Π|P )
G∼ T (Π)πP , i.e.,

T (Π|P ) is graph-equivalent to T (Π)πP .

(e) Discuss the theorem from exercise (d). First, discuss why it is relevant. Why would we need
to define Π|P , if we already saw that πP is a valid abstraction of T (Π), and hence we could
use hπP as our heuristic? Second, discuss why is it important to exclude trivially unsolvable
tasks or trivially inapplicable operators.

Exercise D.2 (4+3+2+3+2 marks)

Note: to simplify implementation details, for the exercises in this part you can assume that the
planning tasks that you have to deal with possess a simplified structure. In particular, you can
assume that they are SAS+ tasks with the additional restrictions that (i) for every operator o,
the set of state variables that appear in pre(o) is the same as the set of state variables that ap-
pear in eff(o), and (ii) the goal formula mentions all the state variables of the problem, which
implies that there is one single goal state. The tasks are converted to this simplified form au-
tomatically without you having to do anything about it, so you can safely assume that condi-
tions (i) and (ii) always hold. This simplified form, by the way, is called Transition Normal
Form (TNF), and is useful to make the proofs of theorems and implementation of algorithms
easier. You can find more details about the way TNF tasks are represented in the code in file
fast-downward/src/search/planopt heuristics/tnf task.h.
The bash scripts in the directory scripts can be extended to run the experiments that you will
need to answer some of the questions.

(a) In the files fast-downward/src/search/planopt heuristics/projection.* you can find
an incomplete implementation of a class projecting a TNF task to a given pattern. Complete
the implementation by projecting the initial state, the goal state and the operators.

The example task from the lecture and two of its projections are implemented in the method
test projections. You can use them to test and debug your implementation by calling Fast
Downward as ./fast-downward.py --test-projections.

(b) In the files fast-downward/src/search/planopt heuristics/pdb.* you can find an in-
complete implementation of a pattern database. Complete the implementation by computing
the distances for all abstract states as described in the code comments.

You can use the built-in implementation of Fast Downward to debug your code as explained
in exercise (c).

(c) Use the heuristic pdb(pattern=greedy(1000)) to find a good pattern with at most 1000
abstract states for each instance in the directory castle. Then run your implementation
from exercise (b) using the heuristic planopt pdb(pattern=P). For each instance use the
same pattern P used by the built-in implementation.

Compare the two implementations and discuss the preprocessing time, the search time, and
the number of expanded states excluding the last f -layer (printed as “Expanded until last
jump”). Repeat the experiment for 100000 abstract states and compare the results.



(d) In the files fast-downward/src/search/planopt heuristics/canonical pdbs.* you can
find an incomplete implementation of the canonical pattern database heuristic. Complete the
implementation in the methods build compatibility graph and compute heuristic to
create the compatibility graph for a given pattern collection and for computing the heuristic
value given the maximal cliques of that graph.

You can use the built-in implementation of Fast Downward to debug your code as explained
in exercise (e).

(e) Use the heuristic cpdbs(patterns=combo(1000)) to find a good pattern collection with at
most 1000 abstract states for each instance in the directory nomystery-opt11-strips. Then
run your implementation from exercise (d) using the heuristic planopt cpdbs(patterns=C).
For each instance use the same pattern collection C used by the built-in implementation.

Compare the two implementations and discuss the total time, and the number of expanded
states excluding the last f -layer (printed as “Expanded until last jump”). Also compare
your results to using a single pattern database heuristic with up to 1000 abstract states as
in exercise (c).

Exercise D.3 (5+3 marks)

(a) Consider a set X = {T1, T2} of abstract transition systems with identical label set L =
{l1, . . . , l7} and cost function c such that c(l1) = c(l4) = c(l6) = 1 and c(l2) = c(l3) = c(l5) =
c(l7) = 2. T1 and T2 are depicted graphically below.

A

B C D

E

l1
l4

l6

l2
l5

l7
l3

T1

1 2

3

l1, l3, l4

l6

l7

l2, l5
l1, l3, l4

T2

• Determine a mapping λ : L 7→ L′ that maps all T1-combinable labels with identical
cost to the same (new) label and all labels l that are not T1-combinable with another
label to l. Let c′ be the cost function that allows exact label reduction with 〈λ, c′〉.
Graphically provide T 〈λ,c

′〉
1 and T 〈λ,c

′〉
2 .

• Graphically provide the transition systems T ′1 and T ′′1 that result from shrinking T 〈λ,c
′〉

1

with the following shrinking strategies:

– T ′1 results from applying f -preserving shrinking, and

– T ′′1 results from applying bisimulation-based shrinking.

• Graphically provide the transition systems T ′1 ⊗T
〈λ,c′〉
2 , T ′′1 ⊗T

〈λ,c′〉
2 , and T1⊗T2. How

do they compare with respect to size and heuristic value of the initial state?

(b) Let X and X ′ be collections of transition systems. Why is h(s) = h∗TX′ (σ(s)) not necessarily

an admissible heuristic for TX if the transformation from X to X ′ is not safe? Discuss the
question for each of the following reasons why a transformation with functions σ and λ can
be unsafe:



• c′(λ(l)) > c(l) for at least one l ∈ L
• there is a transition 〈s, l, t〉 of TX such that 〈σ(s), λ(l), σ(t)〉 is not a transition of TX′ ,

or

• there is a goal state s of TX such that σ(s) is not a goal state of TX′ .

The exercise sheets can be submitted in groups of three students. Please submit one single copy
of the exercises per group (only one member of the group does the submission), and provide all
student names on the submission.


