
Planning and Optimization

G. Röger, T. Keller
G. Francès

University of Basel
Fall Semester 2018

Exercise Sheet C
Due: October 30, 2018

The files required for this exercise are in the directory exercise-c of the course repository
(https: // bitbucket. org/ aibasel/ planopt-hs18 ). All paths are relative to this directory.
Update your clone of the repository with hg pull -u to see the files. For the runs with Fast
Downward, set a time limit of 1 minute and a memory limit of 2 GB. Using Linux, such limits
can be set with ulimit -t 60 and ulimit -v 2000000, respectively.

Exercise C.1 (3+2+2+2+2 marks)

(a) Define a suitable notion of delete relaxation for SAS+ tasks where variables accumulate
values. This should include a definition for states in the delete relaxation; for satisfying a
formula (s |= χ); for domination of states (s dominates s′); and a definition of applying a
relaxed operator (sJo+K) in such tasks. Prove that the following results also hold with your
definitions:

• Domination Lemma: Let s and s′ be states and χ a formula without negation symbols.
If s |= χ and s′ dominates s then s′ |= χ.

• Monotonicity lemma: Let s be a state and o an operator. Then sJo+K dominates s.

Refer to the proofs presented in the lecture for parts of the proofs that remain the same.

(b) Provide planning tasks in positive normal form with the following characteristics, or justify
why no such a task exists:

(i) A task Π1 that is unsolvable, but with Π+
1 having an optimal plan length of 2.

(ii) A task Π2 with optimal plan length of 2, but such that Π+
2 is unsolvable.

(iii) A task Π3 with set of operators O = {o1, o2, o3} (to be specified by you) such that Π+
3

has an optimal plan of length 4.

(iv) An infinite family of planning tasks P = {P1, P2, . . .} (e.g. the definition of Pi is
parametrized by the value of the integer parameter i) such that the optimal plan length
of each task Pi increases with the value of i, but the optimal plan length of any P+

i is
always 1.

(c) Take the simple instance of the Visitall domain (from the International Planning Competi-
tion) in directory visitall-untyped, and make sure you understand the problem. What is
the optimal solution value h∗(I)? What is the value of h+(I)? Draw the full Relaxed Task
Graph corresponding to the instance, and label each node with the final cost that results
from (manually) applying the algorithm seen in class for computing hmax. What is the value
of hmax(I)? Finally, label the graph again, but with the costs that result from hadd instead
of hmax.

(d) In the files fast-downward/src/search/planopt heuristics/h greedy relaxed plan.*

you can find an incomplete implementation of a heuristic that estimates the goal distance
as the cost of a greedily computed relaxed plan. Complete the implementation by applying
operators that are applicable in the relaxed task until the goal is reached or until there are
no more changes. Do not use operators that do not add anything new.



(e) The heuristic from exercise (d) can be used in a greedy search with the option --search

"eager greedy([planopt greedy relaxed()])". Run Fast Downward on the instances in
the directory castle. Which of the instances are relaxed solvable? Which ones can you
solve with this heuristic within the resource limits? Compare the heuristic values of the
initial state with the cost of an optimal relaxed plan, the discovered plan and an optimal
plan.

You can compute optimal relaxed plans by explicitly creating the delete relaxation of the task
and solving it with an optimal search algorithm. This can be done with the Fast Downward
options --search "astar(lmcut())" --translate-options --relaxed. This is not the
ideal way of computing optimal relaxed plans, so it will not complete on all instances. If the
search does not complete, the last reached f -layer is a lower bound to the optimal relaxed
solution cost.



Exercise C.2 (4+4+4+2+3+2 marks)

(a) The files fast-downward/src/search/planopt heuristics/and or graph.* contain an im-
plementation of an AND/OR graph. Implement the so-called generalized Dijkstra’s algorithm
in the method most conservative valuation to find the most conservative valuation of a
given AND/OR graph by following the approach outlined in the code comments.

The example graphs from the lecture are implemented in the method test and or graphs.
You can use them to test and debug your implementation by calling Fast Downward as
./fast-downward.py --test-and-or-graphs.

(b) The files fast-downward/src/search/planopt heuristics/relaxed task graph.* con-
tain a partial implementation of a relaxed task graph for STRIPS tasks. Complete it by
constructing the appropriate AND/OR nodes and edges between them in the constructor.
Also complete the method is goal relaxed reachable by querying the AND/OR graph.

The heuristic planopt relaxed task graph() uses your implementation to prune states
that are not relaxed solvable. Use it in an A∗-search on the instances in the directory
castle and compare it to blind search by the number and speed of expansions.

(c) Modify the construction of the relaxed task graph by setting the cost of each operator as
the direct cost of its effect node.

Then implement the method weighted most conservative valuation for AND/OR graphs
to compute hadd by following the approach outlined in the code comments. Use a comment
to point out the change you would have to make to turn this into a computation for hmax.

Finally, implement the method additive cost of goal of the relaxed task graph class to
return the hadd value of the task based on the implementation above.

(d) The heuristic planopt add() uses your implementation from exercise (c) as heuristic values.
Use it in an eager greedy search on the instances in the directory castle and compare the
heuristic values of the initial state with the cost of an optimal relaxed plan, the discovered
plan and an optimal plan. Also compare the results to the results of exercise 1(e).

The values of planopt add() and the built-in implementation of Fast Downward ( add())
should match, so you can use the built-in implementation for debugging exercise 2(c).

(e) Modify your solution of exercise (c) so that every time you reduce the cost of an OR node,
the ID of the responsible successor is stored in the achiever field of the OR node.

Then implement the method ff cost of goal by collecting all best achievers. Start from
the goal node and recursively collect all successors of each encountered AND node and the
stored best achiever from each encountered OR node. Return the sum of direct costs of all
collected nodes.

(f) The heuristic planopt ff() uses your implementation from exercise (e) as heuristic values.
Use it in an eager greedy search on the instances in the directory castle and compare the
heuristic values of the initial state with the cost of an optimal relaxed plan, the discovered
plan and an optimal plan. Also compare the results to the results of exercises 1(e) and 2(d).

The values of planopt ff() and the built-in implementation of Fast Downward ( ff()) are
not guaranteed to match, but should lead to similar results on these benchmarks.

The exercise sheets can be submitted in groups of three students. Please submit one single copy of
the exercises (only one member of the group does the submission), and provide all student names
on the submission.


