Planning and Optimization

G. Roger, T. Keller University of Basel
G. Frances Fall Semester 2018

Exercise Sheet B
Due: October 21, 2018

The files required for this exercise are in the directory exzercise-b of the course repository
(https: //bitbucket. org/aibasel/planopt-hsi18). All paths are relative to this directory.
Update your clone of the repository with hg pull -u to see the files.

Exercise B.1 (3 marks)
Consider the propositional planning task IT = (V| I, O, ~) with

and

V ={a,b,c,d}
I(v)=F forallveV

0= {017027 03, 04}

Plot the search space explored by a progression and by a regression breadth-first search through
this task. In the regression search simplify the state formula as much as possible at every node of
the search tree. Do not expand the node further if that formula is unsatisfiable or logically entails
the state formula of a previously encountered node. In the progression search do not expand a
node if its state is a duplicate of a previously encountered state.

Exercise B.2 (5+243+2+2 marks)

(a)

In the file regression/strips_regression.py you will find a partial implementation of a
breadth-first regression search for STRIPS tasks. Complete the missing parts and use it to
solve the Beleaguered Castle instance from the last exercise (a grounded PDDL model in
STRIPS of it is in the directory castle). Only regress a formula through an operator if that
operator adds at least one proposition of the formula. Ignore search states with an unsat-
isfiable formula or a formula that is equivalent to the formula of a previously encountered
state. You don’t have to ignore formulas that imply the formula of a previously encountered
state but are not equivalent (i.e., represent strict subsets of states).

How many states are generated and expanded? Have a look at some of the generated states
and explain why so many states are expanded.

Extend your code from exercise (a) with mutex-based pruning by completing the following
steps:

e Complete the method create mutexes by mapping each proposition to a set of propo-
sitions that are mutually exclusive with it. Normally, such mutex groups would be
discovered automatically from the planning task but here you can manually add mutex
groups for the specific instance. Use the mutex groups from exercise A.1 (d).

e Before starting the search, call create mutexes and store the result.



e Before inserting a node into the queue, loop over all propositions in the formula. For
each proposition check if the set of propositions mutex with it intersects the formula.
If it does, there are two mutually exclusive propositions in the formula and it does not
have to be added to the queue.

Repeat the experiment from exercise (a) and discuss the differences.

(c) The file regression/general regression.py contains a partial implementation of general
regression of a formula through an effect. Complete the implementation and use it on the
task vampire/pO1_grounded.pddl. Regress the goal through each operator and list the
resulting formulas. Simplify the formulas as much as possible (within your implementation
or manually). If a formula violates mutexes, list at least one of the violated mutexes (without
proof).

(d) Provide a family of planning tasks II, such that the size of II, is polynomial in n, and
such that a breadth-first search with regression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with progression needs to expand an exponential
number of search nodes in n. Assume the progression search prunes all duplicate states and
the regression prunes a state if its formula logically entails the formula of its parent.

(e) Provide a family of planning tasks II,, such that the size of II,, is polynomial in n, and such
that a breadth-first search with progression expands only a polynomial number of search
nodes in n, whereas a breadth-first search with regression needs to expand an exponential
number of search nodes in n. Assume the same pruning as in exercise (d).

Exercise B.3 (2+3 marks)

(a) Prove BCPLANEX <, PLANEX. You may use the results from the lecture.

(b) Your friend tells you their new idea of how to test whether a planning task is solvable:

“So, you start with parsing the PDDL file and throw away all of the costs; they
are not important. Also, you have to change the task so it only has one goal state.
To do this you just [...] [your friend’s description of how to do this is a little
hard to follow]. Then you create a graph with cities that represent [...] [again
this is hard to understand]. You then have to compute a number K and distances
for all the pairs of cities by [...] [you start to think your friend is not the best
at explaining this idea]. Then compute the cost of the shortest tour through all
of these cities; there are super-fast solvers for that, like Concorde. If the tour is
cheaper than K then the task is solvable otherwise it is unsolvable.”

Discuss this idea (you do not have to come up with a way to fill the gaps). Is it possible
that such a method can work? Are the simplifications at the start justified? Assuming
P # NP # PSPACE what can you say about the time to create the graph?

The exercise sheets can be submitted in groups of three students. Please provide all student names
on the submission.



