D1. Cost Partitioning: Definition, Properties, and Abstractions

Exploiting Additivity

- Additivity allows to add up heuristic estimates admissibly. This gives better heuristic estimates than the maximum.
- For example, the canonical heuristic for PDBs sums up where addition is admissible (by an additivity criterion) and takes the maximum otherwise.
- Cost partitioning provides a more general additivity criterion, based on an adaption of the operator costs.
D1.2 Cost Partitioning

Cost Partitioning: Admissibility (1)

Theorem (Sum of Solution Costs is Admissible)
Let \(\Pi \) be a planning task, \(\langle \text{cost}_1, \ldots, \text{cost}_n \rangle \) be a cost partitioning and \(\langle \Pi_1, \ldots, \Pi_n \rangle \) be the tuple of induced tasks. Then the sum of the solution costs of the induced tasks is an admissible heuristic for \(\Pi \), i.e., \(\sum_{i=1}^{n} h^*_i(s) \leq h^*_\Pi \).

Cost Partitioning: Admissibility (2)

Proof of Theorem.
Let \(\pi = \langle o_1, \ldots, o_m \rangle \) be an optimal plan for state \(s \) of \(\Pi \). Then
\[
\sum_{i=1}^{n} h^*_i(s) \leq \sum_{i=1}^{n} \sum_{j=1}^{m} \text{cost}_i(o_j) \quad (\pi \text{ plan in each } \Pi_i)
\]
\[
= \sum_{j=1}^{m} \sum_{i=1}^{n} \text{cost}_i(o_j) \quad (\text{comm./ass. of sum})
\]
\[
\leq \sum_{j=1}^{m} \text{cost}(o_j) \quad (\text{cost partitioning})
\]
\[
= h^*_\Pi(s) \quad (\pi \text{ optimal plan in } \Pi)
\]
Cost Partitioning Preserves Admissibility

In the rest of the chapter, we write \(h_\Pi \) to denote heuristic \(h \) evaluated on task \(\Pi \).

Corollary (Sum of Admissible Estimates is Admissible)

Let \(\Pi \) be a planning task and let \(\langle \Pi_1, \ldots, \Pi_n \rangle \) be induced by a cost partitioning.

For admissible heuristics \(h_1, \ldots, h_n \), the sum \(h(s) = \sum_{i=1}^{n} h_i,\Pi_i(s) \) is an admissible estimate for \(s \) in \(\Pi \).

Cost Partitioning Preserves Consistency

Theorem (Cost Partitioning Preserves Consistency)

Let \(\Pi \) be a planning task and let \(\langle \Pi_1, \ldots, \Pi_n \rangle \) be induced by a cost partitioning \(\langle \text{cost}_1, \ldots, \text{cost}_n \rangle \).

If \(h_1, \ldots, h_n \) are consistent heuristics then \(h = \sum_{i=1}^{n} h_i,\Pi_i \) is a consistent heuristic for \(\Pi \).

Proof.

Let \(o \) be an operator that is applicable in state \(s \).

\[
 h(s) = \sum_{i=1}^{n} h_i,\Pi_i(s) \leq \sum_{i=1}^{n} (\text{cost}_i(o) + h_i,\Pi_i(s\|o))) \\
 = \sum_{i=1}^{n} \text{cost}_i(o) + \sum_{i=1}^{n} h_i,\Pi_i(s\|o)) \leq \text{cost}(o) + h(s\|o)
\]

Cost Partitioning: Example

Example (No Cost Partitioning)

Heuristic value: \(\max\{2, 2\} = 2 \)

Example (Cost Partitioning 1)

Heuristic value: \(1 + 1 = 2 \)
Cost Partitioning: Example

Example (Cost Partitioning 2)

```
0 0
+0 0 0
10 1
```

Heuristic value: $2 + 2 = 4$

Example (Cost Partitioning 3)

```
2 0
+0 0 0
10 1
```

Heuristic value: $0 + 0 = 0$

Cost Partitioning: Quality

- $h(s) = h_{1,\Pi_1}(s) + \ldots + h_{n,\Pi_n}(s)$
 - can be better or worse than any $h_{i,\Pi}(s)$
 - depending on cost partitioning
- strategies for defining cost-functions
 - uniform: $\text{cost}(o) = \text{cost}(o)/n$
 - zero-one: full operator cost in one copy, zero in all others
 - ...

Can we find an optimal cost partitioning?

Optimal Cost Partitioning

Optimal Cost Partitioning with LPs

- Use variables for cost of each operator in each task copy
- Express heuristic values with linear constraints
- Maximize sum of heuristic values subject to these constraints

LPs known for

- abstraction heuristics
- landmark heuristic
D1.3 Optimal Cost Partitioning for Abstractions

Optimal Cost Partitioning for Abstractions

- Simplified versions of the planning task, e.g., projections
- Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?

⇝ Shortest path problem in abstract transition system

LP for Shortest Path in State Space

Variables
- Distance$_s$ for each state \(s \),
- GoalDist

Objective
Maximize GoalDist

Subject to
- Distance$_{s_i} = 0$ for the initial state \(s_i \)
- Distance$_{s'} \leq \text{Distance}_s + \text{cost}(o)$ for all transition \(s \xrightarrow{o} s' \)
- GoalDist \(\leq \text{Distance}_s \) for all goal states \(s_\star \)

Optimal Cost Partitioning for Abstractions I

Variables
For each abstraction \(\alpha \):
- Distance$_s^\alpha$ for each abstract state \(s \),
- \(\text{cost}^\alpha_o \) for each operator \(o \),
- GoalDist$^\alpha$

Objective
Maximize \(\sum_\alpha \text{GoalDist}^\alpha \)

\ldots
D1. Cost Partitioning: Definition, Properties, and Abstractions

Optimal Cost Partitioning for Abstractions II

Subject to

for all operators o

$$\sum_{\alpha} \text{Cost}_\alpha^o \leq \text{cost}(o)$$

$$\text{Cost}_\alpha^o \geq 0$$

for all abstractions α

and for all abstractions α

$$\text{Distance}_\alpha^s = 0$$

for the abstract initial state s_I

$$\text{Distance}_\alpha^s \leq \text{Distance}_\alpha^{s'} + \text{Cost}_\alpha^o$$

for all transition $s \rightarrow s'$

$$\text{GoalDist}^\alpha \leq \text{Distance}_\alpha^s$$

for all abstract goal states s^\star

Example (1)

Example

Example (2)

Maximize $\text{GoalDist}^1 + \text{GoalDist}^2$ subject to

$$\text{Cost}_\text{red}^1 + \text{Cost}_\text{red}^2 \leq 2$$

$$\text{Cost}_\text{blue}^1 + \text{Cost}_\text{blue}^2 \leq 2$$

$$\text{Cost}_\text{red}^1 \geq 0$$

$$\text{Cost}_\text{red}^2 \geq 0$$

$$\text{Cost}_\text{blue}^1 \geq 0$$

$$\text{Cost}_\text{blue}^2 \geq 0$$

Example (3)

... and ...

$$\text{Distance}_0^1 = 0$$

$$\text{Distance}_0^1 \leq \text{Distance}_0^1 + \text{Cost}_\text{red}^1$$

$$\text{Distance}_1^1 \leq \text{Distance}_0^1 + \text{Cost}_\text{blue}^1$$

$$\text{Distance}_1^1 \leq \text{Distance}_1^1 + \text{Cost}_\text{red}^1$$

$$\text{GoalDist}^1 \leq \text{Distance}_1^1$$

$$\text{Distance}_0^2 = 0$$

$$\text{Distance}_1^2 \leq \text{Distance}_0^2 + \text{Cost}_\text{red}^2$$

$$\text{Distance}_0^2 \leq \text{Distance}_1^2 + \text{Cost}_\text{blue}^2$$

$$\text{GoalDist}^2 \leq \text{Distance}_1^2$$
Caution

A word of warning
▶ optimization for every state gives best-possible cost partitioning
▶ but takes time

Better heuristic guidance often does not outweigh the overhead.

Summary

▶ Cost partitioning allows to admissibly add up estimates of several heuristics.
▶ This can be better or worse than the best individual heuristic on the original problem, depending on the cost partitioning.
▶ For some heuristic classes, we know how to determine an optimal cost partitioning, using linear programming.
▶ Although solving a linear program is possible in polynomial time, the better heuristic guidance often does not outweigh the overhead.