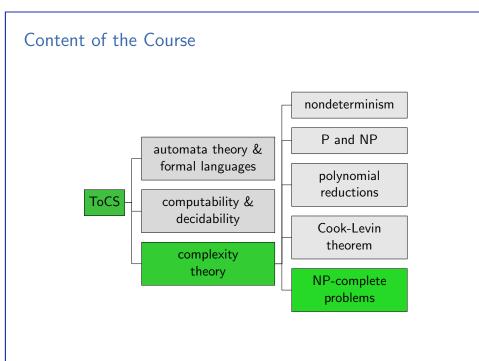
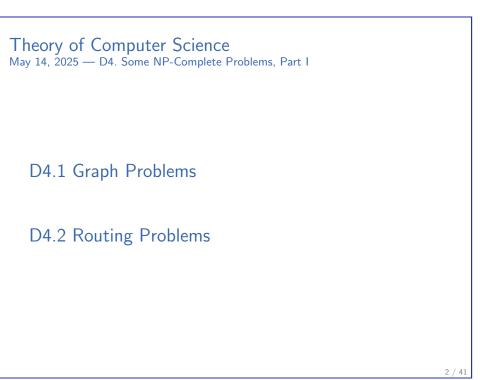
Theory of Computer Science D4. Some NP-Complete Problems, Part I

Gabriele Röger

University of Basel

May 14, 2025





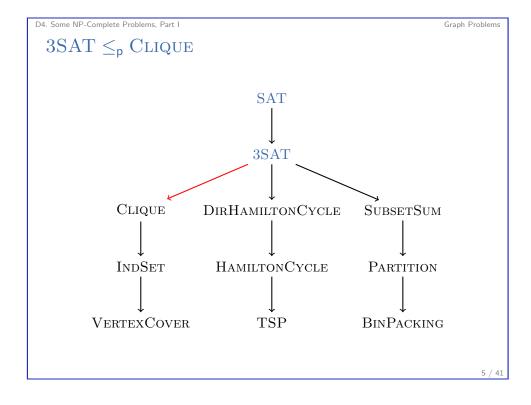
D4. Some NP-Complete Problems, Part I

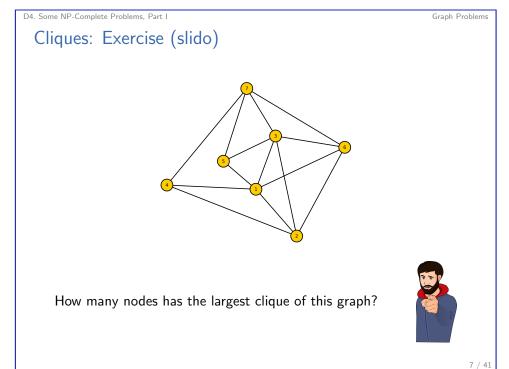
Graph Problems

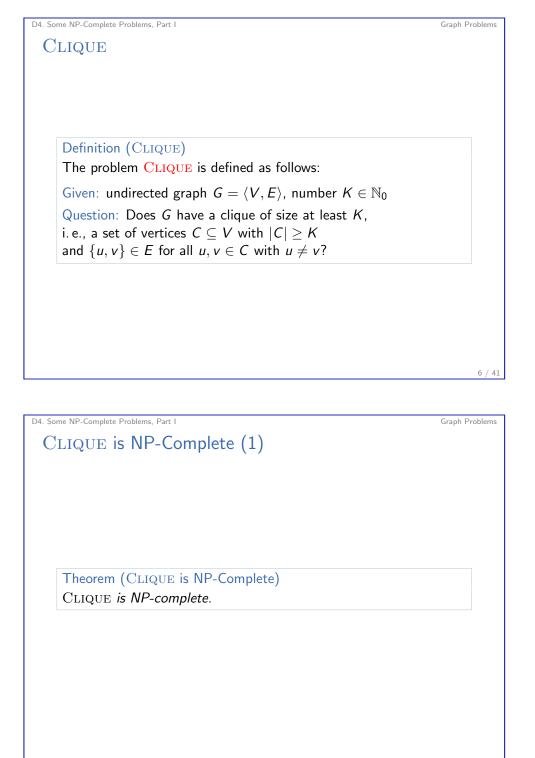
D4.1 Graph Problems

3 / 41

1 / 41







CLIQUE is NP-Complete (2)

Proof. CLIQUE \in NP: guess and check. CLIQUE is NP-hard: We show $3SAT \leq_p CLIQUE$.

- We are given a 3-CNF formula φ, and we may assume that each clause has exactly three literals.
- In polynomial time, we must construct
 a graph G = (V, E) and a number K such that:
 G has a clique of size at least K iff φ is satisfiable.
- \rightsquigarrow construction of V, E, K on the following slides.

D4. Some NP-Complete Problems, Part I

Graph Problems

. . .

9 / 41

. . .

CLIQUE is NP-Complete (4)

Proof (continued).

 (\Rightarrow) : If φ is satisfiable, then $\langle V, E \rangle$ has clique of size at least K:

- Given a satisfying variable assignment choose a vertex corresponding to a satisfied literal in each clause.
- The chosen K vertices are all connected with each other and hence form a clique of size K.

D4. Some NP-Complete Problems, Part I

CLIQUE is NP-Complete (3)

Proof (continued). Let *m* be the number of clauses in φ . Let ℓ_{ij} the *j*-th literal in clause *i*. Define *V*, *E*, *K* as follows: • $V = \{\langle i, j \rangle \mid 1 \le i \le m, 1 \le j \le 3\}$ \Rightarrow a vertex for every literal of every clause • *E* contains edge between $\langle i, j \rangle$ and $\langle i', j' \rangle$ if and only if • $i \ne i' \Rightarrow$ belong to different clauses, and • ℓ_{ij} and $\ell_{i'j'}$ are not complementary literals • K = m \Rightarrow obviously polynomially computable to show: reduction property

D4. Some NP-Complete Problems, Part I

CLIQUE is NP-Complete (5)

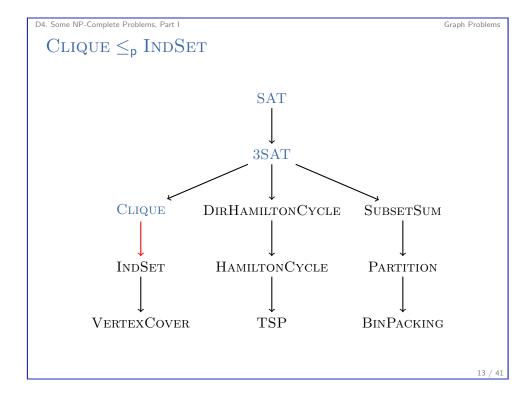
Proof (continued).

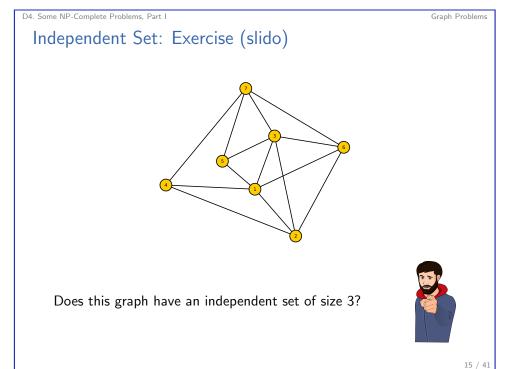
(\Leftarrow): If $\langle V, E \rangle$ has a clique of size at least K, then φ is satisfiable:

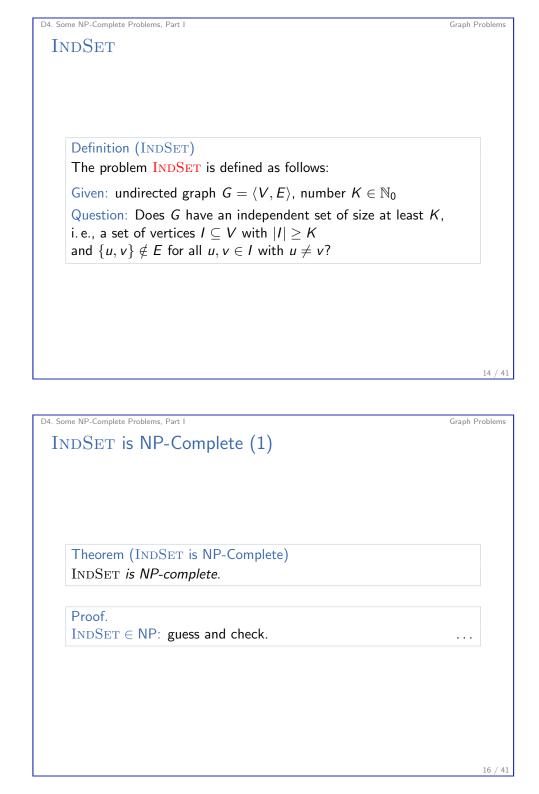
- \blacktriangleright Consider a given clique C of size at least K.
- The vertices in C must all correspond to different clauses (vertices in the same clause are not connected by edges).
- \rightarrow exactly one vertex per clause is included in C
- Two vertices in C never correspond to complementary literals X and ¬X (due to the way we defined the edges).
- ▶ If a vertex corresp. to X was chosen, map X to T (true).
- ▶ If a vertex corresp. to $\neg X$ was chosen, map X to F (false).
- If neither was chosen, arbitrarily map X to T or F.
- \rightsquigarrow satisfying assignment

10 / 41

Graph Problems







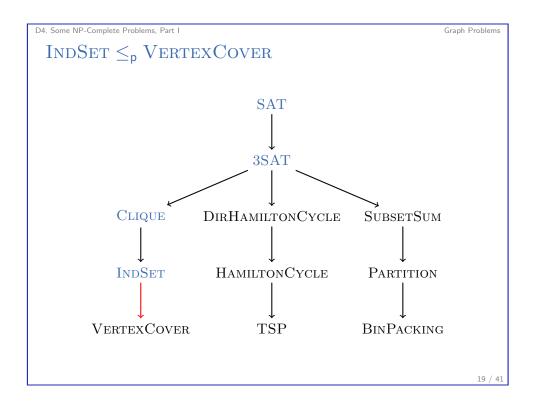
Graph Problems

. . .

INDSET is NP-Complete (2)

Proof (continued). INDSET is NP-hard: We show $CLIQUE \leq_p INDSET$. We describe a polynomial reduction f. Let $\langle G, K \rangle$ with $G = \langle V, E \rangle$ be the given input for CLIQUE. Then $f(\langle G, K \rangle)$ is the INDSET instance $\langle \overline{G}, K \rangle$, where $\overline{G} := \langle V, \overline{E} \rangle$ and $\overline{E} := \{\{u, v\} \subseteq V \mid u \neq v, \{u, v\} \notin E\}$. (This graph \overline{G} is called the complement graph of G.) Clearly f can be computed in polynomial time.

17/41

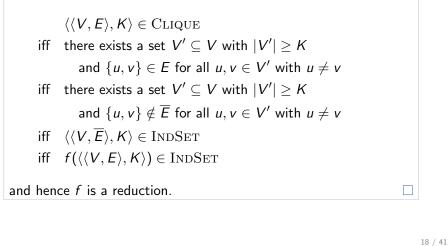


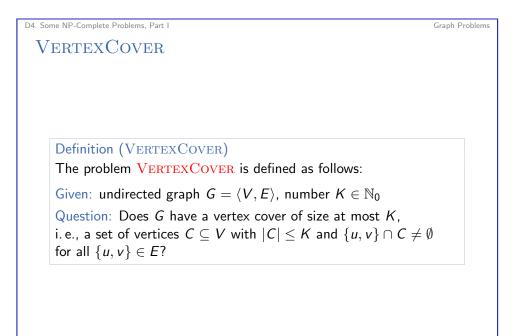
D4. Some NP-Complete Problems, Part I

INDSET is NP-Complete (3)

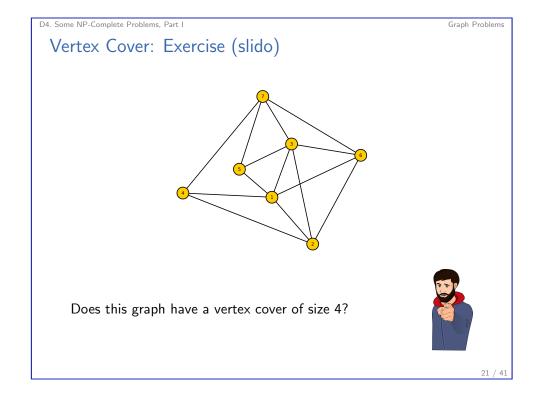
Proof (continued).

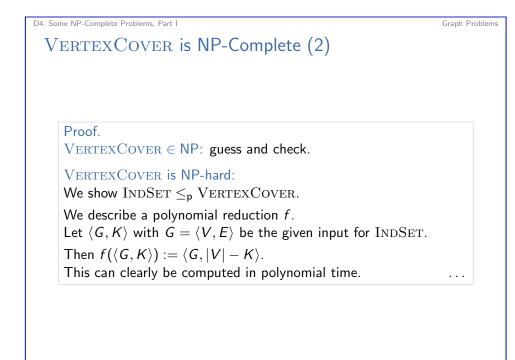
We have:

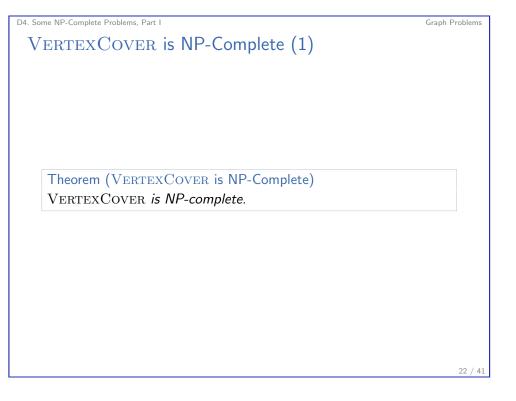




Graph Problems







D4. Some NP-Complete Problems, Part I

VERTEXCOVER is NP-Complete (3)

Proof (continued).

For vertex set $V' \subseteq V$, we write $\overline{V'}$ for its complement $V \setminus V'$.

Observation: a set of vertices is a vertex cover iff its complement is an independent set.

We thus have:

 $\langle \langle V, E \rangle, K \rangle \in \text{INDSET}$ iff $\langle V, E \rangle$ has an independent set I with $|I| \ge K$ iff $\langle V, E \rangle$ has a vertex cover C with $|\overline{C}| \ge K$ iff $\langle V, E \rangle$ has a vertex cover C with $|C| \le |V| - K$ iff $\langle \langle V, E \rangle, |V| - K \rangle \in \text{VERTEXCOVER}$ iff $f(\langle \langle V, E \rangle, K \rangle) \in \text{VERTEXCOVER}$ and hence f is a reduction.

Graph Problems

D4.2 Routing Problems

25 / 41

Routing Problems

D4. Some NP-Complete Problems, Part I

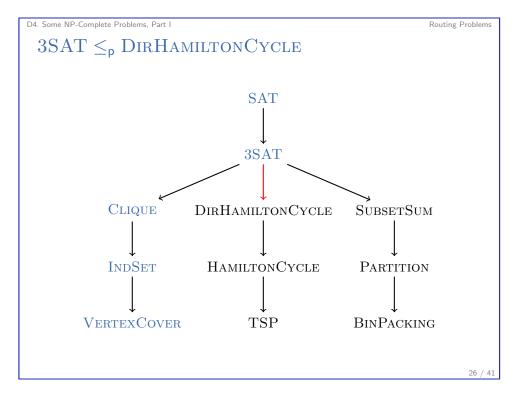
DIRHAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: DIRHAMILTONCYCLE) The problem DIRHAMILTONCYCLE is defined as follows:

Given: directed graph $G = \langle V, E \rangle$ Question: Does G contain a Hamilton cycle?

Theorem

DIRHAMILTONCYCLE *is NP-complete*.



DIRHAMILTONCYCLE is NP-Complete (2)

Proof.

D4. Some NP-Complete Problems, Part I

 $DIRHAMILTONCYCLE \in NP$: guess and check.

DIRHAMILTONCYCLE is NP-hard:

We show $3SAT \leq_p DIRHAMILTONCYCLE$.

- We are given a 3-CNF formula φ where each clause contains exactly three literals and no clause contains duplicated literals.
- We must, in polynomial time, construct a directed graph G = (V, E) such that: G contains a Hamilton cycle iff φ is satisfiable.
- construction of $\langle V, E \rangle$ on the following slides

. . .

Routing Problems

DIRHAMILTONCYCLE is NP-Complete (3)

Proof (continued).

- Let X_1, \ldots, X_n be the atomic propositions in φ .
- Let c_1, \ldots, c_m be the clauses of φ with $c_i = (\ell_{i1} \lor \ell_{i2} \lor \ell_{i3})$.
- Construct a graph with 6m + n vertices (described on the following slides).

29 / 41

Routing Problems

. . .

D4. Some NP-Complete Problems, Part I

DIRHAMILTONCYCLE is NP-Complete (5)

Proof (continued).

Let π be a Hamilton cycle of the total graph.

Whenever π enters subgraph C_j from one of its "entrances", it must leave via the corresponding "exit":

 $(a \longrightarrow A, b \longrightarrow B, c \longrightarrow C).$

Otherwise, π cannot be a Hamilton cycle.

- Hamilton cycles can behave in the following ways with regard to C_j:
 - π passes through C_j once (from any entrance)
 - π passes through C_j twice (from any two entrances)
 - π passes through C_j three times (once from every entrance)

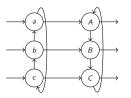
D4. Some NP-Complete Problems, Part I

DIRHAMILTONCYCLE is NP-Complete (4)

Proof (continued).

For every variable X_i, add vertex x_i with 2 incoming and 2 outgoing edges:

For every clause c_j , add the subgraph C_j with 6 vertices:



We describe later how to connect these parts.

D4. Some NP-Complete Problems, Part I

Routing Problems

30 / 41

. . .

Routing Problems

DIRHAMILTONCYCLE is NP-Complete (6)

Proof (continued).

Connect the "open ends" in the graph as follows:

- Identify entrances/exits of the clause subgraph C_j with the three literals in clause c_j.
- One exit of x_i is positive, the other one is negative.
- For the positive exit, determine the clauses in which the positive literal X_i occurs:
 - Connect the positive exit of x_i with the X_i-entrance of the first such clause graph.
 - Connect the X_i-exit of this clause graph with the X_i-entrance of the second such clause graph, and so on.
 - Connect the X_i-exit of the last such clause graph with the positive entrance of x_{i+1} (or x₁ if i = n).
- ▶ analogously for the negative exit of x_i and the literal $\neg X_i$

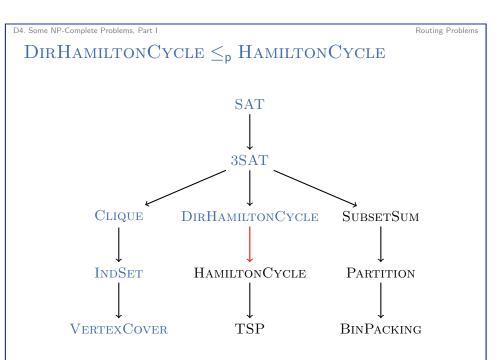
. . .

. . .

Proof (continued).

The construction is polynomial and is a reduction:

- (\Rightarrow) : construct a Hamilton cycle from a satisfying assignment
- ► Given a satisfying assignment *I*, construct a Hamilton cycle that leaves x_i through the positive exit if *I*(X_i) is true and by the negative exit if *I*(X_i) is false.
- Afterwards, we visit all C_j-subgraphs for clauses that are satisfied by this literal.
- ▶ In total, we visit each C_j -subgraph 1–3 times.



DIRHAMILTONCYCLE is NP-Complete (8)

Proof (continued).

(\Leftarrow): construct a satisfying assignment from a Hamilton cycle

- A Hamilton cycle visits every vertex x_i and leaves it by the positive or negative exit.
- Map X_i to true or false depending on which exit is used to leave x_i.
- Because the cycle must traverse each C_j-subgraph at least once (otherwise it is not a Hamilton cycle), this results in a satisfying assignment. (Details omitted.)

Routing Problems

34 / 41

HAMILTONCYCLE is NP-Complete (1)

Definition (Reminder: HAMILTONCYCLE) The problem HAMILTONCYCLE is defined as follows: Given: undirected graph $G = \langle V, E \rangle$

Question: Does G contain a Hamilton cycle?

Theorem

D4. Some NP-Complete Problems, Part I

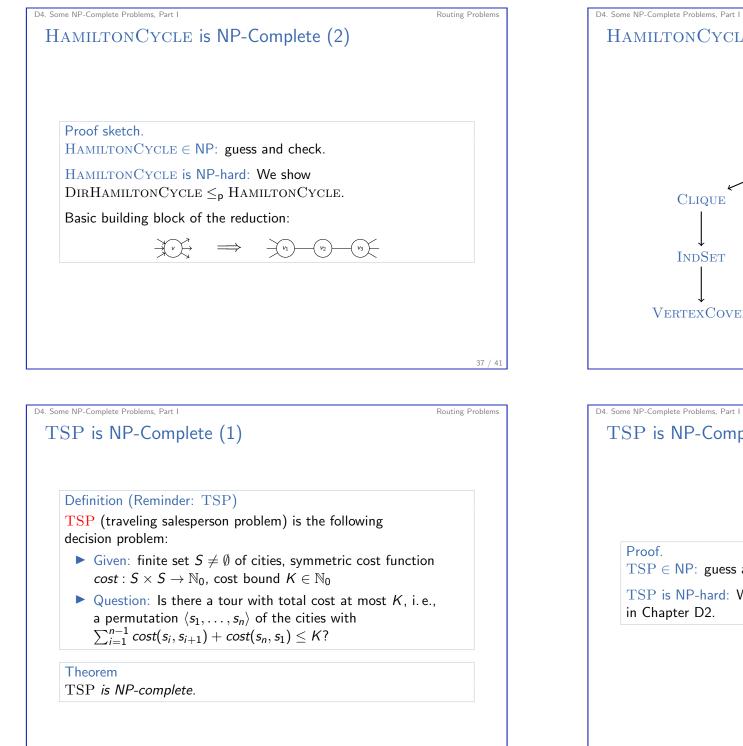
HAMILTONCYCLE *is NP-complete*.

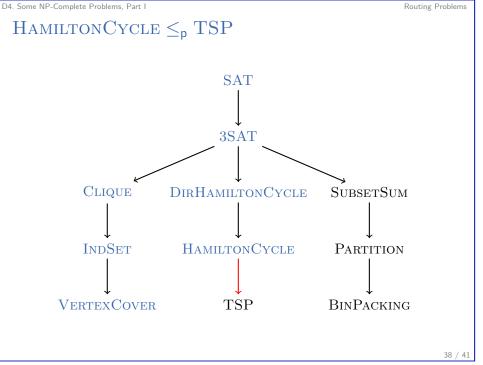
35 / 41

Routing Problems

. . .

33 / 41





Routing Problems

D4.	Some	NP-Compl	ete Pro	blems,	Part I	
-----	------	----------	---------	--------	--------	--

Summary

41 / 41

Summary

- ► In this chapter we showed NP-completeness of

 - three classical graph problems: CLIQUE, INDSET, VERTEXCOVER
 three classical routing problems: DIRHAMILTONCYCLE, HAMILTONCYCLE, TSP