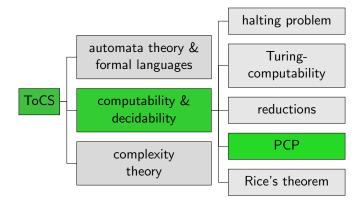
Theory of Computer Science C5. Post Correspondence Problem

Gabriele Röger

University of Basel

April 28, 2025

Content of the Course



More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar ③

More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar 😌
- → We want a wider selection for reduction proofs
- \rightarrow Is there some problem that is different in flavor?

More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar 😌
- → We want a wider selection for reduction proofs
- \rightarrow Is there some problem that is different in flavor?

Post correspondence problem (named after mathematician Emil Leon Post)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

$$\begin{array}{c|c}
1 & 011 \\
101 & 11 \\
1 & 3
\end{array}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

$$\begin{array}{c|c}
\hline
1 \\
101 \\
\hline
1 \\
1
\end{array}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

$$\begin{array}{c|c}
\hline
1 \\
101
\end{array}$$

$$\begin{array}{c|c}
\hline
1 \\
1 \\
1
\end{array}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

$$\begin{array}{c|c}
\hline
1 \\
101
\end{array}$$

$$\begin{array}{c|c}
\hline
1 \\
1 \\
1
\end{array}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

$$\begin{array}{c|c}
1 & 011 \\
101 & 11 \\
1 & 3 & 2
\end{array}$$

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

Example (Post Correspondence Problem)

Given: different kinds of "dominos"

(an infinite number of each kind)

Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words

 $(t_1, b_1), (t_2, b_2), \dots, (t_k, b_k)$, where $t_i, b_i \in \Sigma^+$ (for an arbitrary alphabet Σ)

Question: Is there a sequence

$$i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}, n \ge 1,$$

with $t_{i_1}t_{i_2} \ldots t_{i_n} = b_{i_1}b_{i_2} \ldots b_{i_n}$?

A solution of the correspondence problem is such a sequence i_1, \ldots, i_n , which we call a match.

Exercise (slido)

Consider PCP instance (11, 1), (0, 00), (10, 01), (01, 11).

Is 2, 4, 3, 3, 1 a match?

Given-Question Form vs. Definition as Set

So far: problems defined as sets

Now: definition in Given-Question form

Definition (new problem P)

Given: Instance \mathcal{I}

Question: Does \mathcal{I} have a specific property?

Given-Question Form vs. Definition as Set

So far: problems defined as sets

Now: definition in Given-Question form

Definition (new problem P)

Given: Instance \mathcal{I}

Question: Does \mathcal{I} have a specific property?

corresponds to definitions

Definition (new problem P)

The problem P is the language

 $P = \{w \mid w \text{ encodes an instance } \mathcal{I} \text{ with the required property}\}.$

Definition (new problem P)

The problem P is the language

 $P = \{ \langle \langle \mathcal{I} \rangle \mid \mathcal{I} \text{ is an instance with the required property} \}.$

PCP Definition as Set

We can alternatively define PCP as follows:

Definition (Post Correspondence Problem PCP)

The Post Correspondence Problem PCP is the set

```
\begin{aligned} \text{PCP} &= \{ w \mid w \text{ encodes a sequence of pairs of words} \\ &\quad (t_1,b_1), (t_2,b_2), \ldots, (t_k,b_k), \text{ for which} \\ &\quad \text{there is a sequence } i_1,i_2,\ldots,i_n \in \{1,\ldots,k\} \\ &\quad \text{such that } t_{i_1}t_{i_2}\ldots t_{i_n} = b_{i_1}b_{i_2}\ldots b_{i_n} \}. \end{aligned}
```

Questions

Questions?

(Un-)Decidability of PCP

PCP cannot be so hard, huh?

PCP cannot be so hard, huh?

PCP cannot be so hard, huh?

Formally: K = ((1101, 1), (0110, 11), (1, 110))

PCP cannot be so hard, huh?

- Is it?

l	1101	0110	1	Formally: $K = ((1101, 1), (0110, 11), (1, 110))$
	1	11	110	ightarrow Shortest match has length 252!

PCP cannot be so hard, huh?

PCP cannot be so hard, huh?

```
 \frac{1101}{1}   \frac{0110}{11}   \frac{1}{110}
```

```
Formally: K = ((1101, 1), (0110, 11), (1, 110))

\rightarrow Shortest match has length 252!
```

PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP)

PCP is Turing-recognizable.

PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP)

PCP is Turing-recognizable.

Proof.

Recognition procedure for input w:

- If w encodes a sequence $(t_1, b_1), \ldots, (t_k, b_k)$ of pairs of words: Test systematically longer and longer sequences i_1, i_2, \ldots, i_n whether they represent a match. If yes, terminate and return "yes".
- If w does not encode such a sequence: enter an infinite loop.

If $w \in PCP$ then the procedure terminates with "yes", otherwise it does not terminate.

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP)
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP)
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)
- \rightarrow Let's get started...

MPCP: Definition

Definition (Modified Post Correspondence Problem MPCP)

Given: Sequence of word pairs as for PCP

Question: Is there a match $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}$

with $i_1 = 1$?

Lemma

 $MPCP \leq PCP$.

Lemma

 $MPCP \leq PCP$.

Proof.

Let $\#, \$ \not\in \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define

$$\bar{w} = \#a_1\#a_2\#\dots\#a_m\#$$

$$\hat{w} = \#a_1\#a_2\#\ldots\#a_m$$

$$\acute{w} = a_1 \# a_2 \# \dots \# a_m \#$$

Lemma

 $MPCP \leq PCP$.

Proof.

Let $\#, \$ \notin \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define

$$\bar{w} = \#a_1\#a_2\#\dots\#a_m\#$$

$$\hat{w} = \#a_1\#a_2\#\ldots\#a_m$$

$$\dot{w} = a_1 \# a_2 \# \dots \# a_m \#$$

For input
$$C = ((t_1, b_1), \dots, (t_k, b_k))$$
 define $f(C) = ((\bar{t}_1, \dot{b}_1), (t'_1, \dot{b}_1), (t'_2, \dot{b}_2), \dots, (t'_k, \dot{b}_k), (\$, \#\$))$

. . .

Proof (continued).

$$f(C) = ((\bar{t}_1, \dot{b}_1), (t'_1, \dot{b}_1), (t'_2, \dot{b}_2), \dots, (t'_k, \dot{b}_k), (\$, \#\$))$$

Function f is computable, and can suitably get extended to a total function. It holds that

C has a solution with $i_1 = 1$ iff f(C) has a solution:

Proof (continued).

$$f(C) = ((\bar{t_1}, \dot{b_1}), (t_1, \dot{b_1}), (t_2, \dot{b_2}), \dots, (t_k, \dot{b_k}), (\$, \#\$))$$

Function f is computable, and can suitably get extended to a total function. It holds that

C has a solution with $i_1 = 1$ iff f(C) has a solution:

Let $1, i_2, i_3, \ldots, i_n$ be a solution for C. Then $1, i_2 + 1, \ldots, i_n + 1, k + 2$ is a solution for f(C).

Proof (continued).

$$f(C) = ((\bar{t}_1, \dot{b}_1), (t_1, \dot{b}_1), (t_2, \dot{b}_2), \dots, (t_k, \dot{b}_k), (\$, \#\$))$$

Function f is computable, and can suitably get extended to a total function. It holds that

C has a solution with $i_1 = 1$ iff f(C) has a solution:

Let $1, i_2, i_3, \ldots, i_n$ be a solution for C. Then $1, i_2 + 1, \ldots, i_n + 1, k + 2$ is a solution for f(C).

If i_1,\ldots,i_n is a match for $f(\mathcal{C})$, then (due to the construction of the word pairs) there is a $m\leq n$ such that $i_1=1,i_m=k+2$ and $i_j\in\{2,\ldots,k+1\}$ for $j\in\{2,\ldots,m-1\}$. Then $1,i_2-1,\ldots,i_{m-1}-1$ is a solution for \mathcal{C} .

Proof (continued).

$$f(C) = ((\bar{t}_1, \dot{b}_1), (t'_1, \dot{b}_1), (t'_2, \dot{b}_2), \dots, (t'_k, \dot{b}_k), (\$, \#\$))$$

Function f is computable, and can suitably get extended to a total function. It holds that

C has a solution with $i_1 = 1$ iff f(C) has a solution:

Let $1, i_2, i_3, \ldots, i_n$ be a solution for C. Then $1, i_2 + 1, \ldots, i_n + 1, k + 2$ is a solution for f(C).

If i_1,\ldots,i_n is a match for $f(\mathcal{C})$, then (due to the construction of the word pairs) there is a $m\leq n$ such that $i_1=1,i_m=k+2$ and $i_j\in\{2,\ldots,k+1\}$ for $j\in\{2,\ldots,m-1\}$. Then $1,i_2-1,\ldots,i_{m-1}-1$ is a solution for \mathcal{C} .

 \Rightarrow f is a reduction from MPCP to PCP.

Questions

Questions?

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP)
- ② Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP ≤ PCP)
- ② Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP) $\sqrt{}$
- 2 Reduce halting problem to MPCP ($H \leq MPCP$)

Reducibility of H to MPCP(1)

Lemma

H < MPCP.

Proof.

Goal: Construct for Turing machine

 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}} \rangle$ and word $w \in \Sigma^*$ an MPCP instance $C = ((t_1, b_1), \dots, (t_k, b_k))$ such that

M started on w terminates iff $C \in MPCP$.

. .

Reducibility of H to MPCP(2)

Proof (continued).

Idea:

- Sequence of words describes sequence of configurations of the TM
- "t-row" follows "b-row" x : $\# c_0 \# c_1 \# c_2 \#$ y : $\# c_0 \# c_1 \# c_2 \# c_3 \#$
- Configurations get mostly just copied, only the area around the head changes.
- After a terminating configuration has been reached: make row equal by deleting the configuration.

. . .

Reducibility of H to MPCP(3)

Proof (continued).

Alphabet of *C* is $\Gamma \cup Q \cup \{\#\}$.

1. Pair: $(\#, \#q_0w\#)$

Other pairs:

- copy: (a, a) for all $a \in \Gamma \cup \{\#\}$
- 2 transition:

$$(qa, cq')$$
 if $\delta(q, a) = (q', c, R)$
 $(q\#, cq'\#)$ if $\delta(q, \Box) = (q', c, R)$

Reducibility of H to MPCP(4)

Proof (continued).

```
(bqa,q'bc) if \delta(q,a)=(q',c,L) for all b\in\Gamma

(bq\#,q'bc\#) if \delta(q,\Box)=(q',c,L) for all b\in\Gamma

(\#qa,\#q'c) if \delta(q,a)=(q',c,L)

(\#q\#,\#q'c\#) if \delta(q,\Box)=(q',c,L)
```

- ullet deletion: (aq,q) and (qa,q) for all $a\in\Gamma$ and $q\in\{q_{\mathsf{accept}},q_{\mathsf{reject}}\}$
- finish: (q##,#) for all $q \in \{q_{\mathsf{accept}}, q_{\mathsf{reject}}\}$

Reducibility of H to MPCP(5)

Proof (continued).

" \Rightarrow " If M terminates on input w, there is a sequence c_0,\ldots,c_t of configurations with

- $c_0 = q_0 w$ is the start configuration
- $oldsymbol{c}_t$ is a terminating configuration $(c_t = uqv \; ext{mit} \; u, v \in \Gamma^* \; ext{and} \; q \in \{q_{ ext{accept}}, q_{ ext{reject}}\})$
- $c_i \vdash c_{i+1}$ for i = 0, 1, ..., t-1

Reducibility of H to MPCP(5)

Proof (continued).

" \Rightarrow " If M terminates on input w, there is a sequence c_0,\ldots,c_t of configurations with

- $c_0 = q_0 w$ is the start configuration
- c_t is a terminating configuration $(c_t = uqv \text{ mit } u, v \in \Gamma^* \text{ and } q \in \{q_{\text{accept}}, q_{\text{reject}}\})$
- $c_i \vdash c_{i+1} \text{ for } i = 0, 1, \dots, t-1$

Then C has a match with the overall word

$$\#c_0\#c_1\#\ldots\#c_t\#c_t'\#c_t''\#\ldots\#q_e\#\#$$

Up to c_t : "'t-row"' follows "'b-row"'

From c'_t : deletion of symbols adjacent to terminating state. ...

Reducibility of H to MPCP(6)

Proof (continued).

" \Leftarrow " If C has a solution, it has the form

$$#c_0#c_1#...#c_n##,$$

with $c_0 = q_0 w$. Moreover, there is an $\ell \leq n$, such that q_{accept} or q_{reject} occurs for the first time in c_{ℓ} .

All c_i for $i \leq \ell$ are configurations of M and $c_i \vdash c_{i+1}$ for $i \in \{0, \dots, \ell-1\}$.

 c_0, \ldots, c_ℓ is hence the sequence of configurations of M on input w, which shows that the TM terminates.

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP) $\sqrt{}$
- ② Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

- Reduce MPCP to PCP (MPCP \leq PCP) $\sqrt{}$
- 2 Reduce halting problem to MPCP ($H \leq MPCP$)

PCP: Undecidability – Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark
- **②** Reduce halting problem to MPCP ($H \leq MPCP$) $\sqrt{}$

Proof.

Due to $H \leq \text{MPCP}$ and $\text{MPCP} \leq \text{PCP}$ it holds that $H \leq \text{PCP}$. Since H is undecidable, also PCP must be undecidable.

Questions

Questions?

Summary

Summary

- Post Correspondence Problem:
 Find a sequence of word pairs s.t. the concatenation of all first components equals the one of all second components.
- The Post Correspondence Problem is Turing-recognizable but not decidable.