Theory of Computer Science C5. Post Correspondence Problem

Gabriele Röger

University of Basel

April 28, 2025

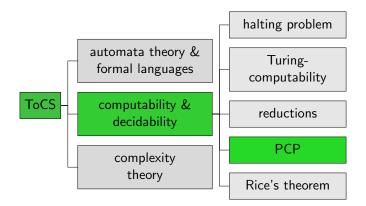
Theory of Computer Science April 28, 2025 — C5. Post Correspondence Problem

C5.1 Post Correspondence Problem

C5.2 (Un-)Decidability of PCP

C5.3 Summary

Content of the Course



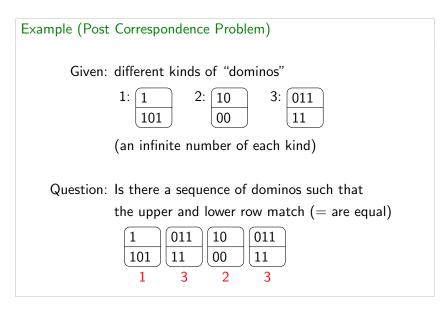
More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- \blacktriangleright both halting problem variants are quite similar igodot
- \rightarrow We want a wider selection for reduction proofs
- \rightarrow Is there some problem that is different in flavor?

Post correspondence problem

(named after mathematician Emil Leon Post)

Post Correspondence Problem: Example



Post Correspondence Problem: Definition

Definition (F	Post Correspondence Problem PCP)
Given:	Finite sequence of pairs of words $(t_1, b_1), (t_2, b_2), \dots, (t_k, b_k)$, where $t_i, b_i \in \Sigma^+$ (for an arbitrary alphabet Σ)
Question:	Is there a sequence $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}, n \ge 1,$ with $t_{i_1} t_{i_2} \ldots t_{i_n} = b_{i_1} b_{i_2} \ldots b_{i_n}$?

A solution of the correspondence problem is such a sequence i_1, \ldots, i_n , which we call a match.

Post Correspondence Problem

Consider PCP instance (11, 1), (0, 00), (10, 01), (01, 11).

Is 2, 4, 3, 3, 1 a match?

Given-Question Form vs. Definition as Set

So far: problems defined as sets Now: definition in Given-Question form

Definition (new problem P)				
Given:	Instance ${\cal I}$			
Question:	Does $\mathcal I$ have a specific property?			

corresponds to definitions

Definition (new problem P) The problem P is the language $P = \{w \mid w \text{ encodes an instance } \mathcal{I} \text{ with the required property}\}.$

Definition (new problem P) The problem P is the language $P = \{ \langle\!\langle \mathcal{I} \rangle\!\rangle \mid \mathcal{I} \text{ is an instance with the required property} \}.$

PCP Definition as Set

We can alternatively define PCP as follows:

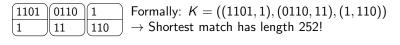
Definition (Post Correspondence Problem PCP) The Post Correspondence Problem PCP is the set

 $PCP = \{w \mid w \text{ encodes a sequence of pairs of words} \\ (t_1, b_1), (t_2, b_2), \dots, (t_k, b_k), \text{ for which} \\ \text{there is a sequence } i_1, i_2, \dots, i_n \in \{1, \dots, k\} \\ \text{such that } t_{i_1}t_{i_2}\dots t_{i_n} = b_{i_1}b_{i_2}\dots b_{i_n}\}.$

C5.2 (Un-)Decidability of PCP

Post Correspondence Problem

$\underset{-\text{ Is it?}}{\operatorname{PCP}}$ cannot be so hard, huh?



10	0	100	Formally: $K = ((10, 0), (0, 001), (100, 1))$
0	001	1	\rightarrow Unsolvable

PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP) PCP *is Turing-recognizable.*

Proof.

Recognition procedure for input w:

 If w encodes a sequence (t₁, b₁),..., (t_k, b_k) of pairs of words: Test systematically longer and longer sequences i₁, i₂,..., i_n whether they represent a match.

If yes, terminate and return "yes".

▶ If *w* does not encode such a sequence: enter an infinite loop.

If $w \in PCP$ then the procedure terminates with "yes", otherwise it does not terminate.

PCP: Undecidability

```
Theorem (Undecidability of PCP) PCP is undecidable.
```

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP)
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)
- \rightarrow Let's get started. . .

MPCP: Definition

Definition (Modified Post Correspondence Problem MPCP)				
Given:	Sequence of word pairs as for PCP			
Question:	Is there a match $i_1, i_2, \ldots, i_n \in \{1, \ldots, k\}$ with $i_1 = 1$?			

Reducibility of MPCP to PCP(1)

Lemma $MPCP \leq PCP.$

Proof. Let $\#, \$ \notin \Sigma$. For word $w = a_1 a_2 \dots a_m \in \Sigma^+$ define $\bar{w} = \#a_1 \# a_2 \# \dots \# a_m \#$ $\hat{w} = \#a_1 \# a_2 \# \dots \# a_m$ $\dot{w} = a_1 \# a_2 \# \dots \# a_m \#$ For input $C = ((t_1, b_1), \dots, (t_k, b_k))$ define $f(C) = ((\bar{t}_1, \dot{b}_1), (t_1, \dot{b}_1), (t_2, \dot{b}_2), \dots, (t_{k}, \dot{b}_{k}), (\$, \#\$))$. . .

Reducibility of MPCP to PCP(2)

Proof (continued). $f(C) = ((\bar{t}_1, \dot{b}_1), (t_1, \dot{b}_1), (t_2, \dot{b}_2), \dots, (t_k, \dot{b}_k), (\$, \#\$))$ Function f is computable, and can suitably get extended to a total function. It holds that C has a solution with $i_1 = 1$ iff f(C) has a solution: Let $1, i_2, i_3, \ldots, i_n$ be a solution for C. Then $1, i_2 + 1, \dots, i_n + 1, k + 2$ is a solution for f(C). If i_1, \ldots, i_n is a match for f(C), then (due to the construction of the word pairs) there is a $m \le n$ such that $i_1 = 1, i_m = k + 2$ and $i_i \in \{2, \dots, k+1\}$ for $j \in \{2, \dots, m-1\}$. Then $1, i_2 - 1, \dots, i_{m-1} - 1$ is a solution for *C*. \Rightarrow f is a reduction from MPCP to PCP.

PCP: Undecidability – Where are we?

Theorem (Undecidability of PCP) PCP *is undecidable.*

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark
- **2** Reduce halting problem to MPCP ($H \leq MPCP$)

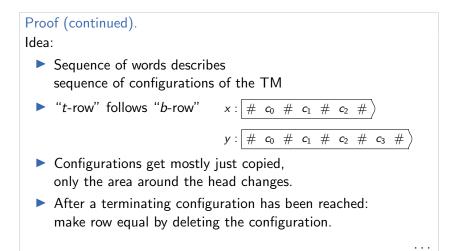
Reducibility of H to MPCP(1)

Lemma $H \leq MPCP.$

Proof. Goal: Construct for Turing machine $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject} \rangle$ and word $w \in \Sigma^*$ an MPCP instance $C = ((t_1, b_1), \dots, (t_k, b_k))$ such that M started on w terminates iff $C \in MPCP$.

. . .

Reducibility of *H* to MPCP(2)



Reducibility of *H* to MPCP(3)

```
Proof (continued).
Alphabet of C is \Gamma \cup Q \cup \{\#\}.
1. Pair: (\#, \#q_0w\#)
Other pairs:
  1 copy: (a, a) for all a \in \Gamma \cup \{\#\}
      transition:
  2
               (qa, cq') if \delta(q, a) = (q', c, R)
            (q\#, cq'\#) if \delta(q, \Box) = (q', c, R)
                                                                                . . .
```

Reducibility of H to MPCP(4)

Proof (continued).

$$(bqa, q'bc)$$
 if $\delta(q, a) = (q', c, L)$ for all $b \in \Gamma$
 $(bq\#, q'bc\#)$ if $\delta(q, \Box) = (q', c, L)$ for all $b \in \Gamma$
 $(\#qa, \#q'c)$ if $\delta(q, a) = (q', c, L)$
 $(\#q\#, \#q'c\#)$ if $\delta(q, \Box) = (q', c, L)$

In the determinant of the determinan

. . .

Reducibility of H to MPCP(5)

Proof (continued). " \Rightarrow " If *M* terminates on input *w*, there is a sequence c_0, \ldots, c_t of configurations with

•
$$c_0 = q_0 w$$
 is the start configuration

•
$$c_t$$
 is a terminating configuration
 $(c_t = uqv \text{ mit } u, v \in \Gamma^* \text{ and } q \in \{q_{\text{accept}}, q_{\text{reject}}\})$

•
$$c_i \vdash c_{i+1}$$
 for $i = 0, 1, ..., t-1$

Then C has a match with the overall word

$$\#c_0 \#c_1 \# \dots \#c_t \#c_t' \#c_t'' \# \dots \#q_e \# \#$$

Up to c_t : "'t-row"' follows "'b-row"' From c'_t : deletion of symbols adjacent to terminating state. ...

Reducibility of H to MPCP(6)

Proof (continued). " \Leftarrow " If C has a solution, it has the form $#c_0#c_1#\ldots#c_n##.$ with $c_0 = q_0 w$. Moreover, there is an $\ell \leq n$, such that q_{accept} or q_{reject} occurs for the first time in c_{ℓ} . All c_i for $i \leq \ell$ are configurations of M and $c_i \vdash c_{i+1}$ for $i \in \{0, \ldots, \ell - 1\}.$ c_0, \ldots, c_ℓ is hence the sequence of configurations of M on input w, which shows that the TM terminates.

PCP: Undecidability – Done!

```
Theorem (Undecidability of PCP) PCP is undecidable.
```

Proof via an intermediate other problem modified PCP (MPCP)

- Reduce MPCP to PCP (MPCP \leq PCP) \checkmark

Proof.

Due to $H \leq MPCP$ and $MPCP \leq PCP$ it holds that $H \leq PCP$. Since H is undecidable, also PCP must be undecidable.

C5.3 Summary

Summary

Post Correspondence Problem:

Find a sequence of word pairs s.t. the concatenation of all first components equals the one of all second components.

The Post Correspondence Problem is Turing-recognizable but not decidable.