
Theory of Computer Science
C3. Turing-Computability

Gabriele Röger

University of Basel

April 16, 2025

1 / 26

Theory of Computer Science
April 16, 2025 — C3. Turing-Computability

C3.1 Turing-Computable Functions

C3.2 Decidability vs. Computability

C3.3 Summary

2 / 26

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

halting problem

Turing-
computability

reductions

PCP

Rice’s theorem

complexity
theory

3 / 26

C3. Turing-Computability Turing-Computable Functions

C3.1 Turing-Computable Functions

4 / 26

C3. Turing-Computability Turing-Computable Functions

Hello World

def hello_world(name):

return "Hello " + name + "!"

When calling hello world("David")

we get the result "Hello David!".

How could a Turing machine output a string
as the result of a computation?

5 / 26

C3. Turing-Computability Turing-Computable Functions

Church-Turing Thesis Revisited

Church-Turing Thesis

All functions that can be computed in the intuitive sense
can be computed by a Turing machine.

▶ Talks about arbitrary functions
that can be computed in the intutive sense.

▶ So far, we have only considered recognizability and
decidability: Is a word in a language, yes or no?

▶ We now will consider function values beyond yes or no
(accept or reject).

▶ ⇒ consider the tape content when the TM accepted.

6 / 26

C3. Turing-Computability Turing-Computable Functions

Computation

In the following we investigate
models of computation for partial functions f : Nk

0 →p N0.

▶ no real limitation: arbitrary information
can be encoded as numbers

7 / 26

German: Berechnungsmodelle

C3. Turing-Computability Turing-Computable Functions

Reminder: Configurations and Computation Steps

How do Turing Machines Work?

▶ configuration: ⟨α, q, β⟩ with α ∈ Γ∗, q ∈ Q, β ∈ Γ+

▶ one computation step: c ⊢ c ′ if one computation step
can turn configuration c into configuration c ′

▶ multiple computation steps: c ⊢∗ c ′ if 0 or more computation
steps can turn configuration c into configuration c ′

(c = c0 ⊢ c1 ⊢ c2 ⊢ · · · ⊢ cn−1 ⊢ cn = c ′, n ≥ 0)

(Definition of ⊢, i.e., how a computation step changes the
configuration, is not repeated here. ⇝ Chapter B11)

8 / 26

C3. Turing-Computability Turing-Computable Functions

Computation of Functions?

How can a DTM compute a function?

▶ “Input” x is the initial tape content.

▶ “Output” f (x) is the tape content (ignoring blanks
at the right) when reaching the accept state.

▶ If the TM stops in the reject state or does not stop for the
given input, f (x) is undefined for this input.

Which kinds of functions can be computed this way?

▶ directly, only functions on words: f : Σ∗ →p Σ∗

▶ interpretation as functions on numbers f : Nk
0 →p N0:

encode numbers as words

9 / 26

C3. Turing-Computability Turing-Computable Functions

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)

A DTM M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩ computes the (partial)
function f : Σ∗ →p Σ∗ for which for all x , y ∈ Σ∗:

f (x) = y iff ⟨ε, q0, x⟩ ⊢∗ ⟨ε, qaccept, y□ . . .□⟩.

(special case: initial configuration ⟨ε, q0,□⟩ if x = ε)

▶ What happens if the computation does not reach qaccept?

▶ What happens if symbols from Γ \ Σ (e. g., □) occur in y?

▶ What happens if the read-write head is not at the first tape
cell when accepting?

▶ Is f uniquely defined by this definition? Why?

10 / 26

German: DTM berechnet f

C3. Turing-Computability Turing-Computable Functions

Turing-Computable Functions on Words

Definition (Turing-Computable, f : Σ∗ →p Σ∗)

A (partial) function f : Σ∗ →p Σ∗ is called Turing-computable
if a DTM that computes f exists.

11 / 26

German: Turing-berechenbar

C3. Turing-Computability Turing-Computable Functions

Example: Turing-Computable Functions on Words

Example

Let Σ = {a, b, #}.
The function f : Σ∗ →p Σ∗ with f (w) = w#w for all w ∈ Σ∗

is Turing-computable.

Idea: ⇝ blackboard

12 / 26

C3. Turing-Computability Turing-Computable Functions

start to-end return

copy-bcopy-a copy-#

scan

cleanupaccept reject

(Missing transitions would
never be used and can be
defined arbitrarily.)

a → ȧ,R
b → ḃ,R
→ #̇,R

□→ #, L

a → a,R
b → b,R
→ #,R

□→ #̂, L

x → x , L

f.a. x ̸∈ {ȧ, ḃ, #̇, ˙̂a, ˙̂b, ˙̂#}

x → x , L
f.a. x ∈
{ȧ, ḃ, #̇, ˙̂a, ˙̂b, ˙̂#}

x → x ,R
f.a. x ∈
{â, b̂, #̂, ˙̂a, ˙̂b, ˙̂#}

□→ □, L

â → a, L
b̂ → b, L
#̂ → #, L

˙̂a → a, L
˙̂b → b, L
˙̂# → #, L

ȧ→
˙̂a,R

a→
â,R

x → x ,R
f.a. x ̸= □

□
→
â,
L

ḃ
→

˙̂ b
,R

b
→

b̂
,R

x → x ,R
f.a. x ̸= □

□
→

b̂
,L

#̇
→
˙̂#,
R

#
→
#̂,
R

x → x ,R
f.a. x ̸= □

□→
#̂, L

13 / 26

C3. Turing-Computability Turing-Computable Functions

Turing-Computable Numerical Functions

▶ We now transfer the concept to partial functions
f : Nk

0 →p N0.
▶ Idea:

▶ To represent a number as a word, we use its binary
representation (= a word over {0, 1}).

▶ To represent tuples of numbers, we separate the binary
representations with symbol #.

▶ For example: (5, 2, 3) becomes 101#10#11

14 / 26

C3. Turing-Computability Turing-Computable Functions

Encoding Numbers as Words

Definition (Encoded Function)

Let f : Nk
0 →p N0 be a (partial) function.

The encoded function f code of f is the partial function
f code : Σ∗ →p Σ∗ with Σ = {0, 1, #} and f code(w) = w ′ iff

▶ there are n1, . . . , nk , n
′ ∈ N0 such that

▶ f (n1, . . . , nk) = n′,

▶ w = bin(n1)# . . . #bin(nk) and

▶ w ′ = bin(n′).

Here bin : N0 → {0, 1}∗ is the binary encoding
(e. g., bin(5) = 101).

Example: f (5, 2, 3) = 4 corresponds to f code(101#10#11) = 100.

15 / 26

German: codierte Funktion

C3. Turing-Computability Turing-Computable Functions

Turing-Computable Numerical Functions

Definition (Turing-Computable, f : Nk
0 →p N0)

A (partial) function f : Nk
0 →p N0 is called Turing-computable

if a DTM that computes f code exists.

16 / 26

German: Turing-berechenbar

C3. Turing-Computability Turing-Computable Functions

Exercise

The addition of natural numbers + : N2
0 → N0 is

Turing-computable. You have a TM M that computes +code.

You want to use M to compute the sum 3 + 2.
What is your input to M?

17 / 26

C3. Turing-Computability Turing-Computable Functions

Example: Turing-Computable Numerical Function

Example

The following numerical functions are Turing-computable:

▶ succ : N0 →p N0 with succ(n) := n + 1

▶ pred1 : N0 →p N0 with pred1(n) :=

{
n − 1 if n ≥ 1

0 if n = 0

▶ pred2 : N0 →p N0 with pred2(n) :=

{
n − 1 if n ≥ 1

undefined if n = 0

How does incrementing and decrementing binary numbers work?

18 / 26

C3. Turing-Computability Turing-Computable Functions

Successor Function

The Turing machine for succ works as follows:
(Details of marking the first tape position ommitted)

1 Check that the input is a valid binary number:
▶ If the input is not a single symbol 0 but starts with a 0, reject.
▶ If the input contains symbol #, reject.

2 Move the head onto the last symbol of the input.

3 While you read a 1 and you are not at the first tape position,
replace it with a 0 and move the head one step to the left.

4 Depending on why the loop in stage 3 terminated:
▶ If you read a 0, replace it with a 1, move the head to the left

end of the tape and accept.
▶ If you read a 1 at the first tape position, move every non-blank

symbol on the tape one position to the right, write a 1 in the
first tape position and accept.

19 / 26

C3. Turing-Computability Turing-Computable Functions

Predecessor Function

The Turing machine for pred1 works as follows:
(Details of marking the first tape position ommitted)

1 Check that the input is a valid binary number (as for succ).

2 If the (entire) input is 0 or 1, write a 0 and accept.

3 Move the head onto the last symbol of the input.

4 While you read symbol 0 replace it with 1 and move left.

5 Replace the 1 with a 0.

6 If you are on the first tape cell, eliminate the trailing 0
(moving all other non-blank symbols one position to the left).

7 Move the head to the first position and accept.

What do you have to change to get a TM for pred2?

20 / 26

C3. Turing-Computability Turing-Computable Functions

More Turing-Computable Numerical Functions

Example

The following numerical functions are Turing-computable:

▶ add : N2
0 →p N0 with add(n1, n2) := n1 + n2

▶ sub : N2
0 →p N0 with sub(n1, n2) := max{n1 − n2, 0}

▶ mul : N2
0 →p N0 with mul(n1, n2) := n1 · n2

▶ div : N2
0 →p N0 with div(n1, n2) :=

{⌈
n1
n2

⌉
if n2 ̸= 0

undefined if n2 = 0

⇝ sketch?

21 / 26

C3. Turing-Computability Decidability vs. Computability

C3.2 Decidability vs. Computability

22 / 26

C3. Turing-Computability Decidability vs. Computability

Decidability as Computability

Theorem

A language L ⊆ Σ∗ is decidable iff χL : Σ∗ → {0, 1},
the characteristic function of L, is computable.

Here, for all w ∈ Σ∗:

χL(w) :=

{
1 if w ∈ L

0 if w /∈ L

Proof sketch.

“⇒” Let M be a DTM for L. Construct a DTM M ′ that simulates
M on the input. If M accepts, M ′ writes a 1 on the tape. If M
rejects, M ′ writes a 0 on the tape. Afterwards M ′ accepts.
“⇐” Let C be a DTM that computes χL. Construct a DTM C ′

that simulates C on the input. If the output of C is 1 then C ′

accepts, otherwise it rejects.

23 / 26

C3. Turing-Computability Decidability vs. Computability

Turing-recognizable Languages and Computability

Theorem
A language L ⊆ Σ∗ is Turing-recognizable
iff the following function χ′

L : Σ∗ →p {0, 1} is computable.

Here, for all w ∈ Σ∗:

χ′
L(w) =

{
1 if w ∈ L

undefined if w ̸∈ L

Proof sketch.

“⇒” Let M be a DTM for L. Construct a DTM M ′ that simulates
M on the input. If M accepts, M ′ writes a 1 on the tape and
accepts. Otherwise it enters an infinite loop.
“⇐” Let C be a DTM that computes χ′

L. Construct a DTM C ′

that simulates C on the input. If C accepts with output 1 then C ′

accepts, otherwise it enters an infinite loop.

24 / 26

C3. Turing-Computability Summary

C3.3 Summary

25 / 26

C3. Turing-Computability Summary

Summary

▶ Turing-computable function f : Σ∗ →p Σ∗:
there is a DTM that transforms every input w ∈ Σ∗

into the output f (w) (undefined if DTM does not stop
or stops in invalid configuration)

▶ Turing-computable function f : Nk
0 →p N0:

ditto; numbers encoded in binary and separated by #

26 / 26

	Turing-Computable Functions
	

	Decidability vs. Computability
	

	Summary
	

