Theory of Computer Science C2. The Halting Problem

Gabriele Röger

University of Basel

April 14, 2025

The Halting Problem H

H is Undecidable

Type-0 Languages

Summary 00

Turing-recognizable vs. decidable

Plan for this Chapter

- We will first revisit the notions Turing-recognizable and Turing-decidable and identify a connection between the two concepts.
- Then we will get to know an important undecidable problem, the halting problem.
- We show that it is Turing-recognizable...
- ... but not Turing-decidable.
- From these results we can conclude that there are languages that are not Turing-recognizable.
- Some of the postponed results on the closure and decidability properties of type 0 languages are direct implications of our findings.

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic Turing machine recognizes it.

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic Turing machine recognizes it.

A Turing machine that halts on all inputs (entering q_{reject} or q_{accept}) is a decider. A decider that recognizes some language also is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some deterministic Turing machine decides it.

H is Undecidable

Type-0 Languages

Summary 00

Intuition

Are these two definitions meaningfully different?

Intuition

Are these two definitions meaningfully different? Yes!

(Turing-)decidable:

Intuition

Are these two definitions meaningfully different? Yes!

Case 1: $w \in L$ (Turing-)decidable:

Intuition

Are these two definitions meaningfully different? Yes!

Case 2: $w \notin L$ (Turing-)decidable:

. . .

Connection Turing-recognizable and Turing-decidable (1)

Reminder: For language L, we write \overline{L} do denote its complement.

Theorem (Decidable vs. Turing-recognizable)

A language L is decidable iff both L and \overline{L} are Turing-recognizable.

Proof.

 (\Rightarrow) : obvious (Why?)

Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).

```
(\Leftarrow): Let M_L be a DTM that recognizes L, and let M_{\overline{L}} be a DTM that recognizes \overline{L}.
```

The following algorithm decides L:

On a given input word w proceed as follows: FOR $s := 1, 2, 3, \ldots$:

IF M_L stops on w in s steps in the accept state: ACCEPT

IF $M_{\overline{L}}$ stops on w in s steps in the accept state: REJECT

Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).

```
(\Leftarrow): Let M_L be a DTM that recognizes L,
and let M_{\bar{L}} be a DTM that recognizes \bar{L}.
```

The following algorithm decides L:

On a given input word w proceed as follows: FOR s := 1, 2, 3, ...:

IF M_L stops on w in s steps in the accept state: ACCEPT

IF $M_{\overline{L}}$ stops on w in s steps in the accept state: REJECT

Why don't we first entirely simulate M_L on the input and only afterwards $M_{\bar{L}}$?

•
$$L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$$

in the decimal representation of $\pi\}$.

- $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}.$
- L is decidable.

- $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}.$
- L is decidable.
- There are either 7-sequences of arbitrary length in π (case 1) or there is a maximal number n_0 of consecutive 7s (case 2).

- $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}.$
- L is decidable.
- There are either 7-sequences of arbitrary length in π (case 1) or there is a maximal number n_0 of consecutive 7s (case 2).
 - Case 1: accept for all *n*

- $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}.$
- L is decidable.
- There are either 7-sequences of arbitrary length in π (case 1) or there is a maximal number n_0 of consecutive 7s (case 2).
 - Case 1: accept for all *n*
 - Case 2: accept if $n \leq n_0$, otherwise reject

- $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}$.
- L is decidable.
- There are either 7-sequences of arbitrary length in π (case 1) or there is a maximal number n_0 of consecutive 7s (case 2).
 - Case 1: accept for all *n*
 - Case 2: accept if $n \leq n_0$, otherwise reject
- In both cases, we can decide the language.

- $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}$.
- L is decidable.
- There are either 7-sequences of arbitrary length in π (case 1) or there is a maximal number n_0 of consecutive 7s (case 2).
 - Case 1: accept for all *n*
 - Case 2: accept if $n \leq n_0$, otherwise reject
- In both cases, we can decide the language.
- We just do not know what is the correct version (and what is n₀ in case 2).

The Halting Problem H

H is Undecidable

Type-0 Languages

Summary 00

Questions

Questions?

The Halting Problem H

H is Undecidable

Type-0 Languages

Summary 00

The Halting Problem H

H is Undecidable

Type-0 Languages 00000 Summary 00

Content of the Course

We have seen how every deterministic Turing machine with input alphabet {0,1} can be encoded as a word over {0,1}. Can there be several words that encode the same DTM?

- We have seen how every deterministic Turing machine with input alphabet {0,1} can be encoded as a word over {0,1}. Can there be several words that encode the same DTM?
- Not every word over $\{0,1\}$ corresponds to such an encoding.

- We have seen how every deterministic Turing machine with input alphabet {0,1} can be encoded as a word over {0,1}. Can there be several words that encode the same DTM?
- Not every word over $\{0,1\}$ corresponds to such an encoding.
- To define for every $w \in \{0,1\}^*$ a corresponding TM, we use an arbitrary fixed DTM \widehat{M} and define

$$M_w = \begin{cases} M' & \text{if } w \text{ is the encoding of some DTM } M' \\ \widehat{M} & \text{otherwise} \end{cases}$$

- We have seen how every deterministic Turing machine with input alphabet {0,1} can be encoded as a word over {0,1}. Can there be several words that encode the same DTM?
- Not every word over $\{0,1\}$ corresponds to such an encoding.
- To define for every $w \in \{0,1\}^*$ a corresponding TM, we use an arbitrary fixed DTM \widehat{M} and define

$$M_w = \begin{cases} M' & \text{if } w \text{ is the encoding of some DTM } M' \\ \widehat{M} & \text{otherwise} \end{cases}$$

• $M_w =$ "Turing machine encoded by w"

H is Undecidable

ype-0 Languages

Halting Problem

Definition (Halting Problem)

The halting problem is the language

$$H = \{ w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$$

 M_w started on x terminates}

"Does the computation of the TM encoded by *w* halt on input *x*?" "Does a given piece of code terminate on a given input?"

The Halting Problem is Turing-recognizable

Theorem

The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w # x:

- **(**) If the input contains more than one # then reject.
- Simulate M_w (the TM encoded by w) on input x.
- 3 If M_w halts, accept.

The Halting Problem is Turing-recognizable

Theorem

The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w # x:

- **(**) If the input contains more than one # then reject.
- Simulate M_w (the TM encoded by w) on input x.
- 3 If M_w halts, accept.

What does U do if M_w does not halt on the input?

The Halting Problem is Turing-recognizable

Theorem

The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w # x:

- **(**) If the input contains more than one # then reject.
- 2 Simulate M_w (the TM encoded by w) on input x.
- **3** If M_w halts, accept.

What does U do if M_w does not halt on the input?

U is an example of a so-called *universal Turing machine* which can simulate any other Turing machine from the description of that machine.

The Halting Problem *H*

H is Undecidable

Type-0 Languages 00000 Summary 00

Questions

Questions?

Turing-recognizable		

H is Undecidable

ype-0 Languages

Summary 00

H is Undecidable

If some language or problem is not Turing-decidable then we call it undecidable.

- If some language or problem is not Turing-decidable then we call it undecidable.
- Intuitively, this means that for this problem there is no algorithm that is correct and terminates on all inputs.

- If some language or problem is not Turing-decidable then we call it undecidable.
- Intuitively, this means that for this problem there is no algorithm that is correct and terminates on all inputs.
- To establish the undeciability of the halting problem, we will consider a situation where we run a Turing machine/algorithm on its own encoding/source code.

- If some language or problem is not Turing-decidable then we call it undecidable.
- Intuitively, this means that for this problem there is no algorithm that is correct and terminates on all inputs.
- To establish the undeciability of the halting problem, we will consider a situation where we run a Turing machine/algorithm on its own encoding/source code.
- We have seen something similar in the very first lecture...

Uncomputable Problems?

Consider functions whose inputs are strings:

```
def program_returns_true_on_input(prog_code, input_str):
    ...
    # returns True if prog_code run on input_str returns True
    # returns False if not
```

Uncomputable Problems?

Consider functions whose inputs are strings:

```
def program_returns_true_on_input(prog_code, input_str):
    ...
    # returns True if prog_code run on input_str returns True
    # returns False if not

def weird_program(prog_code):
    if program_returns_true_on_input(prog_code, prog_code):
        return False
    else:
        return True
```

Uncomputable Problems?

Consider functions whose inputs are strings:

```
def program_returns_true_on_input(prog_code, input_str):
    ...
    # returns True if prog_code run on input_str returns True
    # returns False if not

def weird_program(prog_code):
    if program_returns_true_on_input(prog_code, prog_code):
        return False
    else:
```

return True

What is the return value of weird_program if we run it on its own source code?

Solution

• We can make a case distinction:

H is Undecidable

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source.
 Then weird_program returns False on its own source code.

H is Undecidable

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source. Then weird_program returns False on its own source code.
 - Case 2: weird_program returns False on its own source. Then weird_program returns True on its own source code.

H is Undecidable

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source. Then weird_program returns False on its own source code.
 - Case 2: weird_program returns False on its own source. Then weird_program returns True on its own source code.
- Contradiction in all cases, so weird_program cannot exist.

H is Undecidable

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source.
 Then weird_program returns False on its own source code.
 - Case 2: weird_program returns False on its own source. Then weird_program returns True on its own source code.
- Contradiction in all cases, so weird_program cannot exist.
- From the source we see that this can only be because subroutine program_returns_true_on_input cannot exist.

H is Undecidable

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source.
 Then weird_program returns False on its own source code.
 - Case 2: weird_program returns False on its own source. Then weird_program returns True on its own source code.
- Contradiction in all cases, so weird_program cannot exist.
- From the source we see that this can only be because subroutine program_returns_true_on_input cannot exist.
- Overall, we have proven that there cannot be a program with the behaviour described by the comments.

H is Undecidable

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source.
 Then weird_program returns False on its own source code.
 - Case 2: weird_program returns False on its own source. Then weird_program returns True on its own source code.
- Contradiction in all cases, so weird_program cannot exist.
- From the source we see that this can only be because subroutine program_returns_true_on_input cannot exist.
- Overall, we have proven that there cannot be a program with the behaviour described by the comments.
- For the undecidability of the halting problem, we will use an analogous argument, only with Turing machines instead of code and termination instead of return values.

H is Undecidable

ype-0 Languages

Summary 00

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

H is Undecidable

ype-0 Languages

Summary 00

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof.

Proof by contradiction: we assume that the halting problem H was decidable and derive a contradiction.

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof.

Proof by contradiction: we assume that the halting problem H was decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. ...

Proof (continued).

Construct the following new machine M that takes a word $x \in \{0,1\}^*$ as input:

- Execute *D* on the input x # x.
- If it rejects: accept.
- Otherwise: enter an endless loop.

Proof (continued).

Construct the following new machine M that takes a word $x \in \{0,1\}^*$ as input:

- Execute *D* on the input x # x.
- If it rejects: accept.
- Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

Proof (continued).

Construct the following new machine M that takes a word $x \in \{0,1\}^*$ as input:

- Execute *D* on the input x # x.
- If it rejects: accept.
- Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops iff D run on w # w rejects

Proof (continued).

Construct the following new machine M that takes a word $x \in \{0,1\}^*$ as input:

- Execute *D* on the input x # x.
- If it rejects: accept.
- Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops iff D run on w # w rejects iff $w \# w \notin H$

Proof (continued).

Construct the following new machine M that takes a word $x \in \{0,1\}^*$ as input:

- Execute *D* on the input x # x.
- If it rejects: accept.

Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops iff D run on w # w rejects iff $w \# w \notin H$ iff M run on w does not stop (remember that w encodes M) Contradiction! DTM M cannot exist.

Proof (continued).

Construct the following new machine M that takes a word $x \in \{0,1\}^*$ as input:

- Execute *D* on the input x # x.
- If it rejects: accept.

Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops iff D run on w # w rejects iff $w \# w \notin H$ iff M run on w does not stop (remember that w encodes M) **Contradiction!** DTM M cannot exist. \Rightarrow DTM D cannot exist, thus H is not decidable.

A Language that is not Turing-recognizable

We have the following results:

- A language L is decidable iff both L and L
 are Turing-recognizable.
- The halting problem H is Turing-recognizable but not decidable.

Corollary

The complement \overline{H} of the halting problem H is not Turing-recognizable.

The Halting Problem H 000000 *H* is Undecidable

Type-0 Languages

Summary 00

Exercises

- True or false? There is a grammar that generates *H*.
- True or false? Not all languages are of type 0.

Justify your answers.

The Halting Problem H 000000 *H* is Undecidable

Гуре-0 Languages >0000 Summary 00

Questions

Questions?

The Halting Problem H

H is Undecidable

Type-0 Languages •0000 Summary 00

Reprise: Type-0 Languages

Back to Chapter B13: Closure Properties

	Intersection	Union	Complement	Concatenation	Star
Type 3	Yes	Yes	Yes	Yes	Yes
Type 2	No	Yes	No	Yes	Yes
Type 1	Yes ⁽²⁾	$Yes^{(1)}$	Yes ⁽²⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Type 0	Yes ⁽²⁾	Yes ⁽¹⁾	No ⁽³⁾	Yes ⁽¹⁾	Yes ⁽¹⁾

Proofs?

(1) proof via grammars, similar to context-free cases

- (2) without proof
- (3) proof in later chapters (part C)

Back to Chapter B13: Decidability

	Word problem	Emptiness problem	Equivalence problem	Intersection problem
Type 3	Yes	Yes	Yes	Yes
Type 2	Yes	Yes	No	No
Type 1	Yes ⁽¹⁾	No ⁽³⁾	No ⁽²⁾	No ⁽²⁾
Type 0	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages

(3) without proof

(4) proofs in later chapters (part C)

Answers to Old Questions

Closure properties:

- *H* is Turing-recognizable (and thus type 0) but not decidable.
- $\rightsquigarrow \bar{H}$ is not Turing-recognizable, thus not type 0.
- ~> Type-0 languages are **not** closed under complement.

Decidability:

- *H* is type 0 but not decidable.
- \rightsquigarrow word problem for type-0 languages not decidable
- emptiness, equivalence, intersection problem: later in exercises (We are still missing some important results for this.)

The Halting Problem H 000000 H is Undecidable

Type-0 Languages ○○○○● Summary 00

Questions

Questions?

The Halting Problem H

H is Undecidable

Type-0 Languages

Summary ●0

Summary

Summary

- A language *L* is decidable iff both *L* and \overline{L} are Turing-recognizable.
- The halting problem is the language

$$H = \{ w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$$

 M_w started on x terminates}

- The halting problem is Turing-recognizable but undecidable.
- The complement language \overline{H} is an example of a language that is not even Turing-recognizable.