Theory of Computer Science C2. The Halting Problem

Gabriele Röger

University of Basel

April 14, 2025

C2. The Halting Problem

Turing-recognizable vs. decidable

1 / 28

C2.1 Turing-recognizable vs. decidable

Theory of Computer Science April 14, 2025 — C2. The Halting Problem
C2.1 Turing-recognizable vs. decidable
C2.2 The Halting Problem H
C2.3 <i>H</i> is Undecidable
C2.4 Reprise: Type-0 Languages
C2.5 Summary

C2. The Halting Problem

Plan for this Chapter

- We will first revisit the notions Turing-recognizable and Turing-decidable and identify a connection between the two concepts.
- Then we will get to know an important undecidable problem, the halting problem.
- ▶ We show that it is Turing-recognizable...
- ▶ ... but not Turing-decidable.
- From these results we can conclude that there are languages that are not Turing-recognizable.
- Some of the postponed results on the closure and decidability properties of type 0 languages are direct implications of our findings.

2 / 28

Turing-recognizable vs. decidable

Turing-recognizable vs. decidable

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language) We call a language Turing-recognizable if some deterministic Turing machine recognizes it.

A Turing machine that halts on all inputs (entering q_{reject} or q_{accept}) is a decider. A decider that recognizes some language also is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some deterministic Turing machine decides it.

5 / 28

C2. The Halting Problem

Turing-recognizable vs. decidable

Connection Turing-recognizable and Turing-decidable (1)

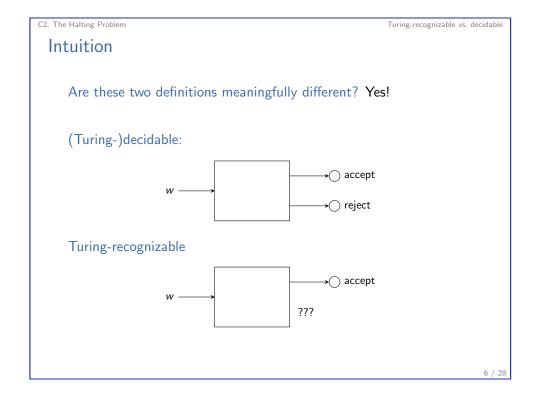
Reminder: For language L, we write \overline{L} do denote its complement.

Theorem (Decidable vs. Turing-recognizable)

A language L is decidable iff both L and \overline{L} are Turing-recognizable.

Proof.

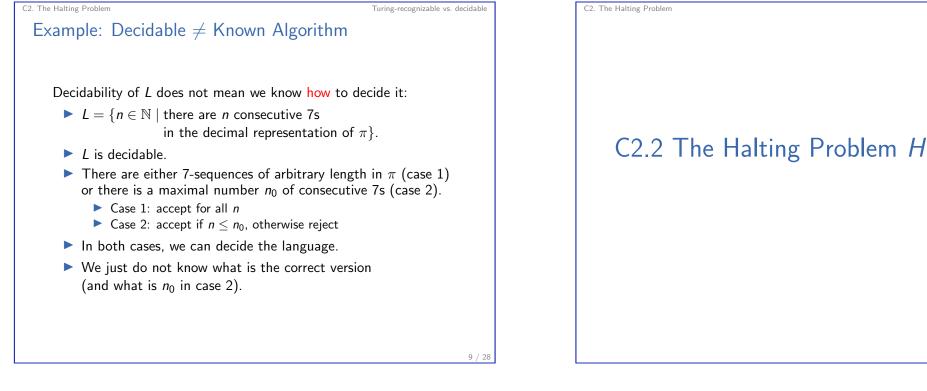
 (\Rightarrow) : obvious (Why?)

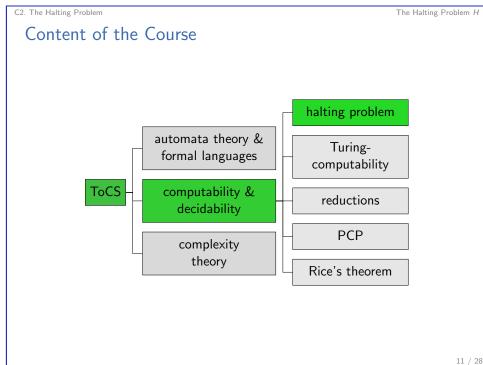


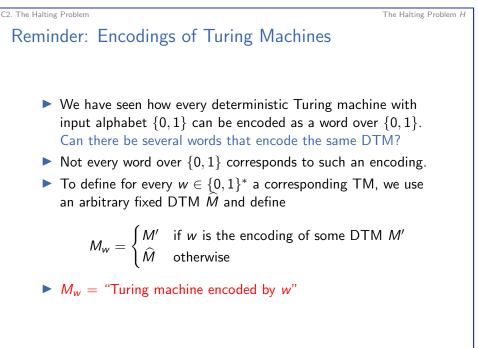
C2. The Halting Problem Connection Turing-recognizable and Turing-decidable (2) Proof (continued). (\Leftarrow): Let M_L be a DTM that recognizes L, and let $M_{\overline{L}}$ be a DTM that recognizes \overline{L} . The following algorithm decides L: On a given input word w proceed as follows: FOR s := 1, 2, 3, ...: IF M_L stops on w in s steps in the accept state: ACCEPT IF $M_{\overline{L}}$ stops on w in s steps in the accept state: REJECT

Why don't we first entirely simulate M_L on the inpu and only afterwards $M_{\bar{l}}$?

. . .







10 / 28

The Halting Problem H

C2. The Halting Problem

The Halting Problem H

Halting Problem

Definition (Halting Problem) The halting problem is the language

 $H = \{ w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$

 M_w started on x terminates}

"Does the computation of the TM encoded by *w* halt on input *x*?" "Does a given piece of code terminate on a given input?"

13 / 28

H is Undecidable

C2.3 H is Undecidable

C2. The Halting Problem

The Halting Problem is Turing-recognizable

Theorem

The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w # x:

- **(**) If the input contains more than one # then reject.
- Simulate M_w (the TM encoded by w) on input x.
- If M_w halts, accept.

What does U do if M_w does not halt on the input?

U is an example of a so-called *universal Turing machine* which can simulate any other Turing machine from the description of that machine.

H is Undecidable

14 / 28

The Halting Problem H

Undecidability

C2. The Halting Problem

- If some language or problem is not Turing-decidable then we call it undecidable.
- Intuitively, this means that for this problem there is no algorithm that is correct and terminates on all inputs.
- To establish the undeciability of the halting problem, we will consider a situation where we run a Turing machine/algorithm on its own encoding/source code.
- We have seen something similar in the very first lecture...

Uncomputable Problems?

Consider functions whose inputs are strings:

```
def program_returns_true_on_input(prog_code, input_str):
# returns True if prog_code run on input_str returns True
# returns False if not
```

def weird_program(prog_code): if program_returns_true_on_input(prog_code, prog_code):

return False else:

return True

What is the return value of weird_program if we run it on its own source code?

17 / 28

H is Undecidable

H is Undecidable

C2. The Halting Problem

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem) The halting problem H is undecidable.

Proof.

Proof by contradiction: we assume that the halting problem H was decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. ...

C2. The Halting Problem

Solution

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source. Then weird_program returns False on its own source code.
 - Case 2: weird_program returns False on its own source. Then weird_program returns True on its own source code.
- Contradiction in all cases, so weird_program cannot exist.
- From the source we see that this can only be because subroutine program_returns_true_on_input cannot exist.
- Overall, we have proven that there cannot be a program with the behaviour described by the comments.
- ▶ For the undecidability of the halting problem, we will use an analogous argument, only with Turing machines instead of code and termination instead of return values.

18 / 28

C2. The Halting Problem H is Undecidable Undecidability of the Halting Problem (2) Proof (continued). Construct the following new machine M that takes a word $x \in \{0, 1\}^*$ as input: • Execute *D* on the input x # x. If it rejects: accept. 3 Otherwise: enter an endless loop. Let w be the encoding of M. How will M behave on input w? *M* run on *w* stops iff D run on w # w rejects iff $w \# w \notin H$ iff M run on w does not stop (remember that w encodes M) Contradiction! DTM *M* cannot exist. \Rightarrow DTM D cannot exist, thus H is not decidable.

A Language that is not Turing-recognizable

We have the following results:

- ▶ A language *L* is decidable iff both *L* and \overline{L} are Turing-recognizable.
- ▶ The halting problem *H* is Turing-recognizable but not decidable.

Corollary

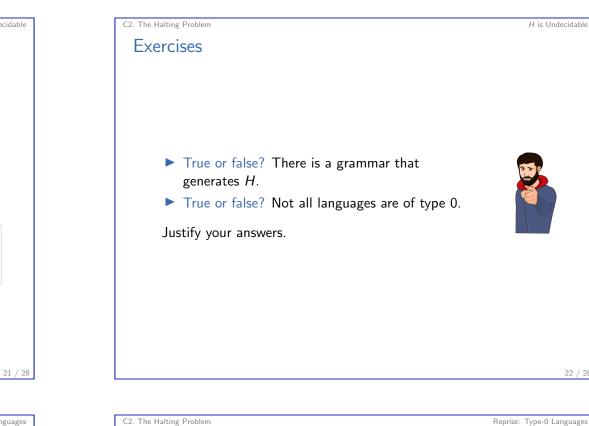
C2. The Halting Problem

The complement \overline{H} of the halting problem H is not Turing-recognizable.

Reprise: Type-0 Languages

H is Undecidable

C2.4 Reprise: Type-0 Languages



C2. The Halting Problem

Back to Chapter B13: Closure Properties

	Intersection	Union	Complement	Concatenation	Star
Type 3	Yes	Yes	Yes	Yes	Yes
Type 2	No	Yes	No	Yes	Yes
Type 1	Yes ⁽²⁾	$Yes^{(1)}$	Yes ⁽²⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Type 0	Yes ⁽²⁾	$Yes^{(1)}$	No ⁽³⁾	Yes ⁽¹⁾	Yes ⁽¹⁾

Proofs?

(1) proof via grammars, similar to context-free cases (2) without proof (3) proof in later chapters (part C)

22 / 28

Reprise: Type-0 Languages

Back to Chapter B13: Decidability

	Word problem	Emptiness problem	Equivalence problem	Intersection problem
Туре 3	Yes	Yes	Yes	Yes
Type 2	Yes	Yes	No	No
Type 1	Yes ⁽¹⁾	No ⁽³⁾	No ⁽²⁾	No ⁽²⁾
Type 0	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾

Proofs?

C2. The Halting Problem

- (1) same argument we used for context-free languages
- (2) because already undecidable for context-free languages
- (3) without proof
- (4) proofs in later chapters (part C)

25 / 28

Summarv

C2.5 Summary

Answers to Old Questions

Closure properties:

- ▶ *H* is Turing-recognizable (and thus type 0) but not decidable.
- \rightarrow \bar{H} is not Turing-recognizable, thus not type 0.
- → Type-0 languages are **not** closed under complement.

Decidability:

- \blacktriangleright *H* is type 0 but not decidable.
- → word problem for type-0 languages not decidable
- \rightsquigarrow emptiness, equivalence, intersection problem: later in exercises (We are still missing some important results for this.)

26 / 28

C2. The Halting Problem Summary Summary ▶ A language *L* is decidable iff both *L* and \overline{L} are Turing-recognizable. ► The halting problem is the language $H = \{ w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$ M_w started on x terminates} ▶ The halting problem is Turing-recognizable but undecidable. • The complement language \overline{H} is an example of a language that is not even Turing-recognizable.