Theory of Computer Science C2. The Halting Problem

Gabriele Röger

University of Basel

April 14, 2025

Theory of Computer Science April 14, 2025 — C2. The Halting Problem

C2.1 Turing-recognizable vs. decidable

C2.2 The Halting Problem H

C2.3 H is Undecidable

C2.4 Reprise: Type-0 Languages

C2.5 Summary

C2.1 Turing-recognizable vs. decidable

Plan for this Chapter

- We will first revisit the notions Turing-recognizable and Turing-decidable and identify a connection between the two concepts.
- Then we will get to know an important undecidable problem, the halting problem.
- We show that it is Turing-recognizable...
- but not Turing-decidable.
- From these results we can conclude that there are languages that are not Turing-recognizable.
- Some of the postponed results on the closure and decidability properties of type 0 languages are direct implications of our findings.

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language) We call a language Turing-recognizable if some deterministic Turing machine recognizes it.

A Turing machine that halts on all inputs (entering q_{reject} or q_{accept}) is a decider. A decider that recognizes some language also is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some deterministic Turing machine decides it.

Intuition

Are these two definitions meaningfully different? Yes!

(Turing-)decidable:

Turing-recognizable

Connection Turing-recognizable and Turing-decidable (1)

Reminder: For language L, we write \overline{L} do denote its complement.

Theorem (Decidable vs. Turing-recognizable)

A language L is decidable iff both L and \overline{L} are Turing-recognizable.

Proof. (\Rightarrow) : obvious (Why?)

. . .

Connection Turing-recognizable and Turing-decidable (2)

```
Proof (continued).
(\Leftarrow): Let M_l be a DTM that recognizes L,
and let M_{\bar{l}} be a DTM that recognizes \bar{L}.
The following algorithm decides L:
On a given input word w proceed as follows:
FOR s := 1, 2, 3, \ldots:
  IF M_1 stops on w in s steps in the accept state:
     ACCEPT
  IF M_{\bar{I}} stops on w in s steps in the accept state:
     REJECT
```

Why don't we first entirely simulate M_L on the input and only afterwards $M_{\bar{L}}$?

Example: Decidable \neq Known Algorithm

Decidability of L does not mean we know how to decide it:

- ▶ $L = \{n \in \mathbb{N} \mid \text{there are } n \text{ consecutive 7s}$ in the decimal representation of $\pi\}$.
- L is decidable.
- There are either 7-sequences of arbitrary length in π (case 1) or there is a maximal number n_0 of consecutive 7s (case 2).
 - Case 1: accept for all n
 - Case 2: accept if $n \leq n_0$, otherwise reject
- In both cases, we can decide the language.
- We just do not know what is the correct version (and what is n₀ in case 2).

C2.2 The Halting Problem H

Content of the Course

C2. The Halting Problem

Reminder: Encodings of Turing Machines

- We have seen how every deterministic Turing machine with input alphabet {0,1} can be encoded as a word over {0,1}. Can there be several words that encode the same DTM?
- ▶ Not every word over $\{0,1\}$ corresponds to such an encoding.
- ▶ To define for every $w \in \{0,1\}^*$ a corresponding TM, we use an arbitrary fixed DTM \widehat{M} and define

$$M_w = \begin{cases} M' & \text{if } w \text{ is the encoding of some DTM } M' \\ \widehat{M} & \text{otherwise} \end{cases}$$

• $M_w =$ "Turing machine encoded by w"

Halting Problem

Definition (Halting Problem) The halting problem is the language $H = \{w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*, M_w \text{ started on } x \text{ terminates}\}$

"Does the computation of the TM encoded by *w* halt on input *x*?" "Does a given piece of code terminate on a given input?"

The Halting Problem is Turing-recognizable

Theorem The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w # x:

- **(**) If the input contains more than one # then reject.
- 2 Simulate M_w (the TM encoded by w) on input x.
- **3** If M_w halts, accept.

What does U do if M_w does not halt on the input?

U is an example of a so-called *universal Turing machine* which can simulate any other Turing machine from the description of that machine.

C2.3 *H* is Undecidable

Undecidability

- If some language or problem is not Turing-decidable then we call it undecidable.
- Intuitively, this means that for this problem there is no algorithm that is correct and terminates on all inputs.
- To establish the undeciability of the halting problem, we will consider a situation where we run a Turing machine/algorithm on its own encoding/source code.
- ▶ We have seen something similar in the very first lecture...

C2. The Halting Problem

Uncomputable Problems?

Consider functions whose inputs are strings:

```
def program_returns_true_on_input(prog_code, input_str):
    ...
    # returns True if prog_code run on input_str returns True
    # returns False if not

def weird_program(prog_code):
    if program_returns_true_on_input(prog_code, prog_code):
        return False
    else:
        return True
```


What is the return value of weird_program if we run it on its own source code?

Solution

- We can make a case distinction:
 - Case 1: weird_program returns True on its own source. Then weird_program returns False on its own source code.
 - Case 2: weird_program returns False on its own source. Then weird_program returns True on its own source code.
- Contradiction in all cases, so weird_program cannot exist.
- From the source we see that this can only be because subroutine program_returns_true_on_input cannot exist.
- Overall, we have proven that there cannot be a program with the behaviour described by the comments.
- For the undecidability of the halting problem, we will use an analogous argument, only with Turing machines instead of code and termination instead of return values.

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem) The halting problem H is undecidable.

Proof.

Proof by contradiction: we assume that the halting problem H was decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. ...

C2. The Halting Problem

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word $x \in \{0,1\}^*$ as input:

- Execute *D* on the input x # x.
- If it rejects: accept.
- 3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops

iff D run on w # w rejects

iff $w \# w \notin H$

iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM *M* cannot exist.

 \Rightarrow DTM D cannot exist, thus H is not decidable.

A Language that is not Turing-recognizable

We have the following results:

- A language L is decidable iff both L and L
 Turing-recognizable.
- The halting problem H is Turing-recognizable but not decidable.

Corollary

The complement \overline{H} of the halting problem H is not Turing-recognizable.

H is Undecidable

- True or false? There is a grammar that generates *H*.
- ► True or false? Not all languages are of type 0.

Justify your answers.

Reprise: Type-0 Languages

C2.4 Reprise: Type-0 Languages

Back to Chapter B13: Closure Properties

	Intersection	Union	Complement	Concatenation	Star
Type 3	Yes	Yes	Yes	Yes	Yes
Type 2	No	Yes	No	Yes	Yes
Type 1	Yes ⁽²⁾	$Yes^{(1)}$	Yes ⁽²⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Type 0	Yes ⁽²⁾	$Yes^{(1)}$	No ⁽³⁾	Yes ⁽¹⁾	Yes ⁽¹⁾

Proofs?

(1) proof via grammars, similar to context-free cases

(2) without proof

(3) proof in later chapters (part C)

Back to Chapter B13: Decidability

	Word problem	Emptiness problem	Equivalence problem	Intersection problem
Type 3	Yes	Yes	Yes	Yes
Type 2	Yes	Yes	No	No
Type 1	Yes ⁽¹⁾	No ⁽³⁾	No ⁽²⁾	No ⁽²⁾
Type 0	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾	No ⁽⁴⁾

Proofs?

(1) same argument we used for context-free languages

(2) because already undecidable for context-free languages

(3) without proof

(4) proofs in later chapters (part C)

Answers to Old Questions

Closure properties:

- ▶ *H* is Turing-recognizable (and thus type 0) but not decidable.
- \rightarrow \bar{H} is not Turing-recognizable, thus not type 0.
- ~> Type-0 languages are **not** closed under complement.

Decidability:

- ► *H* is type 0 but not decidable.
- \rightsquigarrow word problem for type-0 languages not decidable
- emptiness, equivalence, intersection problem: later in exercises (We are still missing some important results for this.)

C2.5 Summary

Summary

 A language L is decidable iff both L and L
 Turing-recognizable.

The halting problem is the language

$$H = \{ w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$$

 M_w started on x terminates}

- ► The halting problem is Turing-recognizable but undecidable.
- The complement language \overline{H} is an example of a language that is not even Turing-recognizable.