
Theory of Computer Science
C2. The Halting Problem

Gabriele Röger

University of Basel

April 14, 2025

1 / 28



Theory of Computer Science
April 14, 2025 — C2. The Halting Problem

C2.1 Turing-recognizable vs. decidable

C2.2 The Halting Problem H

C2.3 H is Undecidable

C2.4 Reprise: Type-0 Languages

C2.5 Summary

2 / 28



C2. The Halting Problem Turing-recognizable vs. decidable

C2.1 Turing-recognizable vs.
decidable

3 / 28



C2. The Halting Problem Turing-recognizable vs. decidable

Plan for this Chapter

▶ We will first revisit the notions Turing-recognizable and
Turing-decidable and identify a connection between the two
concepts.

▶ Then we will get to know an important undecidable problem,
the halting problem.

▶ We show that it is Turing-recognizable. . .

▶ . . . but not Turing-decidable.

▶ From these results we can conclude that there are languages
that are not Turing-recognizable.

▶ Some of the postponed results on the closure and decidability
properties of type 0 languages are direct implications of our
findings.

4 / 28



C2. The Halting Problem Turing-recognizable vs. decidable

Reminder: Turing-recognizable and Turing-decidable

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.

A Turing machine that halts on all inputs (entering qreject or
qaccept) is a decider. A decider that recognizes some language also
is said to decide the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some
deterministic Turing machine decides it.

5 / 28



C2. The Halting Problem Turing-recognizable vs. decidable

Intuition

Are these two definitions meaningfully different? Yes!

Case

(Turing-)decidable:

w

accept

reject

Turing-recognizable

w

accept

???

6 / 28



C2. The Halting Problem Turing-recognizable vs. decidable

Connection Turing-recognizable and Turing-decidable (1)

Reminder: For language L, we write L̄ do denote its complement.

Theorem (Decidable vs. Turing-recognizable)

A language L is decidable iff both L and L̄ are Turing-recognizable.

Proof.

(⇒): obvious (Why?) . . .

7 / 28



C2. The Halting Problem Turing-recognizable vs. decidable

Connection Turing-recognizable and Turing-decidable (2)

Proof (continued).

(⇐): Let ML be a DTM that recognizes L,
and let ML̄ be a DTM that recognizes L̄.

The following algorithm decides L:

On a given input word w proceed as follows:
FOR s := 1, 2, 3, . . . :
IF ML stops on w in s steps in the accept state:

ACCEPT
IF ML̄ stops on w in s steps in the accept state:

REJECT

Why don’t we first entirely simulate ML on the input
and only afterwards ML̄?

8 / 28



C2. The Halting Problem Turing-recognizable vs. decidable

Example: Decidable ̸= Known Algorithm

Decidability of L does not mean we know how to decide it:

▶ L = {n ∈ N | there are n consecutive 7s
L = {n ∈ N | in the decimal representation of π}.

▶ L is decidable.
▶ There are either 7-sequences of arbitrary length in π (case 1)

or there is a maximal number n0 of consecutive 7s (case 2).
▶ Case 1: accept for all n
▶ Case 2: accept if n ≤ n0, otherwise reject

▶ In both cases, we can decide the language.

▶ We just do not know what is the correct version
(and what is n0 in case 2).

9 / 28



C2. The Halting Problem The Halting Problem H

C2.2 The Halting Problem H

10 / 28



C2. The Halting Problem The Halting Problem H

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

halting problem

Turing-
computability

reductions

PCP

Rice’s theorem

complexity
theory

11 / 28



C2. The Halting Problem The Halting Problem H

Reminder: Encodings of Turing Machines

▶ We have seen how every deterministic Turing machine with
input alphabet {0, 1} can be encoded as a word over {0, 1}.
Can there be several words that encode the same DTM?

▶ Not every word over {0, 1} corresponds to such an encoding.

▶ To define for every w ∈ {0, 1}∗ a corresponding TM, we use
an arbitrary fixed DTM M̂ and define

Mw =

{
M ′ if w is the encoding of some DTM M ′

M̂ otherwise

▶ Mw = “Turing machine encoded by w”

12 / 28



C2. The Halting Problem The Halting Problem H

Halting Problem

Definition (Halting Problem)

The halting problem is the language

H = {w#x ∈ {0, 1, #}∗ | w , x ∈ {0, 1}∗,
Mw started on x terminates}

“Does the computation of the TM encoded by w halt on input x?”
“Does a given piece of code terminate on a given input?”

13 / 28



C2. The Halting Problem The Halting Problem H

The Halting Problem is Turing-recognizable

Theorem
The halting problem H is Turing-recognizable.

The following Turing machine U recognizes language H:

On input w#x :

1 If the input contains more than one # then reject.

2 Simulate Mw (the TM encoded by w) on input x .

3 If Mw halts, accept.

What does U do if Mw does not halt on the input?

U is an example of a so-called universal Turing machine
which can simulate any other Turing machine
from the description of that machine.

14 / 28



C2. The Halting Problem H is Undecidable

C2.3 H is Undecidable

15 / 28



C2. The Halting Problem H is Undecidable

Undecidability

▶ If some language or problem is not Turing-decidable
then we call it undecidable.

▶ Intuitively, this means that for this problem there is no
algorithm that is correct and terminates on all inputs.

▶ To establish the undeciability of the halting problem, we will
consider a situation where we run a Turing machine/algorithm
on its own encoding/source code.

▶ We have seen something similar in the very first lecture. . .

16 / 28



C2. The Halting Problem H is Undecidable

Uncomputable Problems?

Consider functions whose inputs are strings:

def program_returns_true_on_input(prog_code, input_str):

...

# returns True if prog_code run on input_str returns True

# returns False if not

def weird_program(prog_code):

if program_returns_true_on_input(prog_code, prog_code):

return False

else:

return True

What is the return value of weird program

if we run it on its own source code?

17 / 28



C2. The Halting Problem H is Undecidable

Solution

▶ We can make a case distinction:
▶ Case 1: weird program returns True on its own source.

Then weird program returns False on its own source code.
▶ Case 2: weird program returns False on its own source.

Then weird program returns True on its own source code.

▶ Contradiction in all cases, so weird program cannot exist.

▶ From the source we see that this can only be because
subroutine program returns true on input cannot exist.

▶ Overall, we have proven that there cannot be a program with
the behaviour described by the comments.

▶ For the undecidability of the halting problem, we will use an
analogous argument, only with Turing machines instead of
code and termination instead of return values.

18 / 28



C2. The Halting Problem H is Undecidable

Undecidability of the Halting Problem (1)

Theorem (Undecidability of the Halting Problem)

The halting problem H is undecidable.

Proof.
Proof by contradiction: we assume that the halting problem H was
decidable and derive a contradiction.

So assume H is decidable and let D be a DTM that decides it. . . .

19 / 28



C2. The Halting Problem H is Undecidable

Undecidability of the Halting Problem (2)

Proof (continued).

Construct the following new machine M that takes a word
x ∈ {0, 1}∗ as input:

1 Execute D on the input x#x .

2 If it rejects: accept.

3 Otherwise: enter an endless loop.

Let w be the encoding of M. How will M behave on input w?

M run on w stops
iff D run on w#w rejects
iff w#w ̸∈ H
iff M run on w does not stop (remember that w encodes M)

Contradiction! DTM M cannot exist.
⇒ DTM D cannot exist, thus H is not decidable.

20 / 28



C2. The Halting Problem H is Undecidable

A Language that is not Turing-recognizable

We have the following results:

▶ A language L is decidable iff both L and L̄ are
Turing-recognizable.

▶ The halting problem H is Turing-recognizable but not
decidable.

Corollary

The complement H̄ of the halting problem H is not
Turing-recognizable.

21 / 28



C2. The Halting Problem H is Undecidable

Exercises

▶ True or false? There is a grammar that
generates H.

▶ True or false? Not all languages are of type 0.

Justify your answers.

22 / 28



C2. The Halting Problem Reprise: Type-0 Languages

C2.4 Reprise: Type-0 Languages

23 / 28



C2. The Halting Problem Reprise: Type-0 Languages

Back to Chapter B13: Closure Properties

Intersection Union Complement Concatenation Star

Type 3 Yes Yes Yes Yes Yes

Type 2 No Yes No Yes Yes

Type 1 Yes(2) Yes(1) Yes(2) Yes(1) Yes(1)

Type 0 Yes(2) Yes(1) No(3) Yes(1) Yes(1)

Proofs?
(1) proof via grammars, similar to context-free cases
(2) without proof
(3) proof in later chapters (part C)

24 / 28



C2. The Halting Problem Reprise: Type-0 Languages

Back to Chapter B13: Decidability

Word
problem

Emptiness
problem

Equivalence
problem

Intersection
problem

Type 3 Yes Yes Yes Yes

Type 2 Yes Yes No No

Type 1 Yes(1) No(3) No(2) No(2)

Type 0 No(4) No(4) No(4) No(4)

Proofs?
(1) same argument we used for context-free languages
(2) because already undecidable for context-free languages
(3) without proof
(4) proofs in later chapters (part C)

25 / 28



C2. The Halting Problem Reprise: Type-0 Languages

Answers to Old Questions

Closure properties:

▶ H is Turing-recognizable (and thus type 0) but not decidable.

⇝ H̄ is not Turing-recognizable, thus not type 0.

⇝ Type-0 languages are not closed under complement.

Decidability:

▶ H is type 0 but not decidable.

⇝ word problem for type-0 languages not decidable

⇝ emptiness, equivalence, intersection problem: later in exercises
(We are still missing some important results for this.)

26 / 28



C2. The Halting Problem Summary

C2.5 Summary

27 / 28



C2. The Halting Problem Summary

Summary

▶ A language L is decidable iff both L and L̄ are
Turing-recognizable.

▶ The halting problem is the language

H = {w#x ∈ {0, 1, #}∗ | w , x ∈ {0, 1}∗,
Mw started on x terminates}

▶ The halting problem is Turing-recognizable but undecidable.

▶ The complement language H̄ is an example of a language that
is not even Turing-recognizable.

28 / 28


	Turing-recognizable vs. decidable
	

	The Halting Problem H
	

	H is Undecidable
	

	Reprise: Type-0 Languages
	

	Summary
	


