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Turing Machines Summary

Automata for Type-1 and Type-0 Languages?

Finite automata
recognize exactly the regular languages,

push-down automata exactly the
context-free languages. Are there

automata models for context-sensitive
and type-0 languages?

Yes! ⇝ Turing machines

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Automata for Type-1 and Type-0 Languages?

Finite automata
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push-down automata exactly the
context-free languages. Are there

automata models for context-sensitive
and type-0 languages?
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German: Turingmaschinen
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Alan Turing (1912–1954)

Picture courtesy of Jon Callas /
wikimedia commons

British logician, mathematician,
cryptanalyst and computer scientist

most important work (for us):
On Computable Numbers,
with an Application to the
Entscheidungsproblem
⇝ Turing machines

collaboration on Enigma decryption

conviction due to homosexuality;
pardoned by Elizabeth II in Dec. 2013

Turing award most important
science award in computer science
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Turing Machines: Conceptually

b a c a c a c a □ □ □ . . .

(one-sided) infinite tape

read-write head
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Turing Machine: Definition

Definition (Deterministic Turing Machine)

A (deterministic) Turing machine (DTM) is given by a 7-tuple
M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩, where
Q,Σ, Γ are all finite sets and

Q is the set of states,

Σ is the input alphabet, not containing the blank symbol □,

Γ is the tape alphabet, where □ ∈ Γ and Σ ⊆ Γ,

δ : (Q \ {qaccept, qreject})× Γ → Q × Γ× {L,R} is the
transition function,

q0 ∈ Q is the start state,

qaccept ∈ Q is the accept state,

qreject ∈ Q is the reject state, where qaccept ̸= qreject.
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Turing Machine: Transition Function

Let M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩ be a DTM.

What is the Intuitive Meaning of the Transition Function δ?

δ(q, a) = ⟨q′, b,D⟩:
If M is in state q and reads a, then

M transitions to state q′ in the next step,

replacing a with b,

and moving the head in direction D ∈ {L,R}, where:
R: one step to the right,
L: one step to the left, except if the head is on the left-most
cell of the tape in which case there is no movement

q q′
a → b,D



Turing Machines Summary

Deterministic Turing Machine: Example

⟨{q1, . . . , q5, qaccept, qreject}, {0}, {0, x,□}, δ, q1, qaccept, qreject⟩

q1 q2 q3

q4

q5

qacceptqreject

0 → □,R

□→ □,R
x → x,R

□→ □,R

0 → x,R

0 → 0,R

□→ □, L

0 → x,R

□→ □,R

x → x,R

x → x,R

x → x,R

x → x, L
0 → 0, L

□→ □,R
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Turing Machine: Configuration

Definition (Configuration of a Turing Machine)

A configuration of a Turing machine
M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩
is given by a triple c ∈ Γ∗ × Q × Γ+.

Configuration ⟨w1, q,w2⟩ intuitively means that

the non-empty or already visited part of the tape
contains the word w1w2,

the read-write head is on the first symbol of w2, and

the TM is in state q.

German: Konfiguration
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Turing Machine Configurations: Example

Example

configuration ⟨BEFORE, q, AFTER□□⟩.

B E F O R E A F T E R □ □ . . .

q
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Turing Machine Configurations: Start Configuration

Initially

the TM is in start state q0,

the head is on the first tape cell, and

the tape contains the input word w followed by an infinite
number of □ entries.

The corresponding start configuration is ⟨ε, q0,w⟩ if w ̸= ε
and ⟨ε, q0,□⟩ if w = ε.
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Turing Machine: Step

Definition (Transition/Step of a Turing Machine)

A DTM M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩ transitions
from configuration c to configuration c ′ in one step (c ⊢M c ′)
according to the following rules:

⟨a1 . . . am, q, b1 . . . bn⟩ ⊢M ⟨a1 . . . amc , q′, b2 . . . bn⟩
if δ(q, b1) = ⟨q′, c,R⟩, m ≥ 0, n ≥ 2

⟨a1 . . . am, q, b1⟩ ⊢M ⟨a1 . . . amc , q′,□⟩
if δ(q, b1) = ⟨q′, c,R⟩, m ≥ 0

⟨a1 . . . am, q, b1 . . . bn⟩ ⊢M ⟨a1 . . . am−1, q
′, amcb2 . . . bn⟩

if δ(q, b1) = ⟨q′, c, L⟩, m ≥ 1, n ≥ 1

⟨ε, q, b1 . . . bn⟩ ⊢M ⟨ε, q′, cb2 . . . bn⟩
if δ(q, b1) = ⟨q′, c , L⟩, n ≥ 1
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Step: Exercise (Slido)

q1 q2 q3

q4

q5

qacceptqreject

0 → □,R

□→ □,R
x → x,R

□→ □,R

0 → x,R

0 → 0,R

□→ □, L

0 → x,R

□→ □,R

x → x,R

x → x,R

x → x,R

x → x, L
0 → 0, L

□→ □,R

⟨□x, q3, 00⟩ ⊢ ?
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DTM: Accepted Words

Intuitively, a DTM accepts a word if its computation terminates in
the accept state.

Definition (Words Accepted by a DTM)

DTM M = ⟨Q,Σ, Γ, δ, q0, qaccept, qreject⟩ accepts the word
w = a1 . . . an if there is a sequence of configurations c0, . . . , ck with

1 c0 is the start configuration of M on input w ,

2 ci ⊢M ci+1 for all i ∈ {0, . . . , k − 1}, and
3 ck is an accepting configuration,

i. e., a configuration with state qaccept.
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Accepted Word: Example (Slido)

Does this Turing machine accept input 0000?

q1 q2 q3

q4

q5

qacceptqreject

0 → □,R

□→ □,R
x → x,R

□→ □,R

0 → x,R

0 → 0,R

□→ □, L

0 → x,R

□→ □,R

x → x,R

x → x,R

x → x,R

x → x, L
0 → 0, L

□→ □,R
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DTM: Recognized Language

Definition (Language Recognized by a DTM)

Let M be a deterministic Turing Machine
The language recognized by M (or the language of M) is defined
as L(M) = {w ∈ Σ∗ | w is accepted by M}.

Definition (Turing-recognizable Language)

We call a language Turing-recognizable if some deterministic
Turing machine recognizes it.
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DTM: Recognized Language

Definition (Language Recognized by a DTM)

Let M be a deterministic Turing Machine
The language recognized by M (or the language of M) is defined
as L(M) = {w ∈ Σ∗ | w is accepted by M}.

Definition (Turing-recognizable Language)
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Turing Machine: Example

q1 q2 q3

q4

q5

qacceptqreject

0 → □,R

□→ □,R
x → x,R

□→ □,R

0 → x,R

0 → 0,R

□→ □, L

0 → x,R

□→ □,R

x → x,R

x → x,R

x → x,R

x → x, L
0 → 0, L

□→ □,R

1 Sweep left to right across the tape, crossing off every other 0.

2 If in stage 1 the tape contained a single 0, accept.

3 If in stage 1 the tape contained more than one 0 and the
number of 0s was odd, reject.

4 Return the head to the left end of the tape and go to stage 1.
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Recognized Language: Example

q1 q2 q3

q4

q5

qacceptqreject

0 → □,R

□→ □,R
x → x,R

□→ □,R

0 → x,R

0 → 0,R

□→ □, L

0 → x,R

□→ □,R

x → x,R

x → x,R

x → x,R

x → x, L
0 → 0, L

□→ □,R

What language does the Turing machine recognize?
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Deciders

A Turing machine either fails to accept an input

because it rejects it (entering qreject) or
because it loops (= does not halt).

A Turing machine that halts on all inputs (entering qreject or
qaccept) is called a decider.

A decider that recognizes some language also is said to decide
the language.

Definition (Turing-decidable Language)

We call a language Turing-decidable (or decidable) if some
deterministic Turing machine decides it.
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Exercise (if time)

Specify the state diagram of a DTM that decides
language

L = {w#w | w ∈ {0, 1}∗}.

Feel free to solve this together with your neighbour.
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Questions

Questions?
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Summary
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Summary

Turing machines only have finitely many states
but an unbounded tape as “memory”.

Alan Turing proposed them as a mathematical model
for arbitrary algorithmic computations.

In this role, we will revisit them in the parts
on computability and complexity theory.


	Turing Machines
	

	Summary
	


