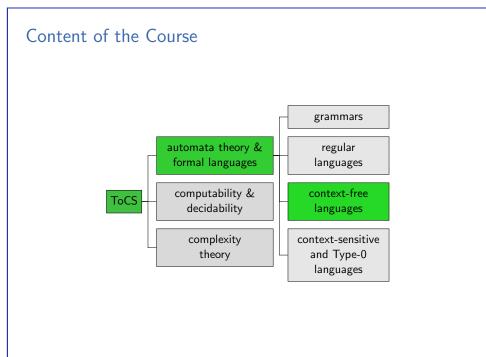


Gabriele Röger

University of Basel

March 26, 2025

1 / 23



Theory of Computer Science March 26, 2025 — B8. Context-free Languages: ε-Rules & Chomsky Normal Form

B8.1 Context-free Grammars and  $\varepsilon$ -Rules

**B8.2 Chomsky Normal Form** 

B8.3 Summary

B8. Context-free Languages:  $\varepsilon$ -Rules & Chomsky Normal Form

Context-free Grammars and  $\varepsilon$ -Rules

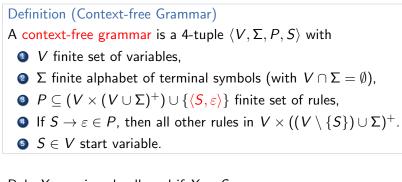
2 / 23

B8.1 Context-free Grammars and  $\varepsilon\text{-Rules}$ 



Context-free Grammars and  $\varepsilon$ -Rules

# Repetition: Context-free Grammars



Rule  $X \to \varepsilon$  is only allowed if X = Sand *S* never occurs on a right-hand side.

With regular grammars, this restriction could be lifted. How about context-free grammars?

5 / 23

B8. Context-free Languages:  $\varepsilon$ -Rules & Chomsky Normal Form

Context-free Grammars and  $\varepsilon$ -Rules

# Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple  $\langle V, \Sigma, P, S \rangle$  with

- V finite set of variables,
- **2**  $\Sigma$  finite alphabet of terminal symbols (with  $V \cap \Sigma = \emptyset$ ),
- $P \subseteq (V \times (V \cup \Sigma)^+) \cup \{\langle S, \varepsilon \rangle\}$  finite set of rules,
- **9** If  $S \to \varepsilon \in P$ , then all other rules in  $V \times ((V \setminus \{S\}) \cup \Sigma)^+$ .
- **5**  $S \in V$  start variable.

Rule  $X \rightarrow \varepsilon$  is only allowed if X = Sand *S* never occurs on a right-hand side.

With regular grammars, this restriction could be lifted. How about context-free grammars? B8. Context-free Languages:  $\varepsilon\text{-Rules}$  & Chomsky Normal Form

# Context-free Grammars: Exercise

We have used the pumping lemma for regular languages to show that  $L = \{a^n b^n \mid n \in \mathbb{N}_0\}$  is not regular.



Context-free Grammars and  $\varepsilon$ -Rules

Show that it is context-free by specifying a suitable grammar G with  $\mathcal{L}(G) = L$ .

B8. Context-free Languages: arepsilon-Rules & Chomsky Normal Form

Context-free Grammars and  $\varepsilon$ -Rules

6 / 23

# Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple  $\langle V, \Sigma, P, S \rangle$  with

- V finite set of variables,
- **2**  $\Sigma$  finite alphabet of terminal symbols (with  $V \cap \Sigma = \emptyset$ ),
- $P \subseteq (V \times (V \cup \Sigma)^+) \cup \{\langle S, \varepsilon \rangle\}$  finite set of rules,
- If  $S \to \varepsilon \in P$ , then all other rules in  $V \times ((V \setminus \{S\}) \cup \Sigma)^+$ .
- **5**  $S \in V$  start variable.

Rule  $X \to \varepsilon$  is only allowed if X = Sand *S* never occurs on a right-hand side.

With regular grammars, this restriction could be lifted. How about context-free grammars?

#### B8. Context-free Languages: $\varepsilon\text{-Rules}$ & Chomsky Normal Form

Context-free Grammars and  $\varepsilon\text{-Rules}$ 

# Reminder: Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

## Theorem

For every grammar  $G = \langle V, \Sigma, P, S \rangle$  there is a grammar  $G' = \langle V', \Sigma, P', S \rangle$  with rules  $P' \subseteq (V' \cup \Sigma)^+ \times (V' \setminus \{S\} \cup \Sigma)^*$  such that  $\mathcal{L}(G) = \mathcal{L}(G')$ .

In the proof we constructed a suitable grammar, where the rules in P' were not fundamentally different from the rules in P:

- ► for rules from  $V \times (V \cup \Sigma)^+$ , we only introduced additional rules from  $V' \times (V' \cup \Sigma)^+$ , and
- ▶ for rules from  $V \times \varepsilon$ , we only introduced rules from  $V' \times \varepsilon$ , where  $V' = V \cup \{S'\}$  for some new variable  $S' \notin V$ .

9 / 23

11 / 23

B8. Context-free Languages:  $\varepsilon$ -Rules & Chomsky Normal Form

Context-free Grammars and  $\varepsilon$ -Rules

# $\varepsilon\text{-Rules}$

#### Theorem

For every grammar G with rules  $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with  $\mathcal{L}(G) = \mathcal{L}(G')$ .

## Proof (continued).

- Let P'' be the rule set that is constructed from P' by
- adding rules that obviate the need for A → ε rules: for every existing rule B → w with B ∈ V', w ∈ (V' ∪ Σ)<sup>+</sup>, let I<sub>ε</sub> be the set of positions where w contains a variable A ∈ V<sub>ε</sub>. For every non-empty set I' ⊆ I<sub>ε</sub>, add a new rule B → w', where w' is constructed from w by removing the variables at all positions in I'.

► removing all rules of the form  $A \to \varepsilon$   $(A \neq S)$ . Then  $G'' = \langle V', \Sigma, P'', S \rangle$  is context-free and  $\mathcal{L}(G) = \mathcal{L}(G'')$ .

#### B8. Context-free Languages: ε-Rules & Chomsky Normal Form

Context-free Grammars and  $\varepsilon$ -Rules

## $\varepsilon$ -Rules

### Theorem

For every grammar G with rules  $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with  $\mathcal{L}(G) = \mathcal{L}(G')$ .

#### Proof.

Let  $G = \langle V, \Sigma, P, S \rangle$  be a grammar with  $P \subseteq V \times (V \cup \Sigma)^*$ .

Let  $G' = \langle V', \Sigma, P', S \rangle$  be a grammar with  $\mathcal{L}(G) = \mathcal{L}(G')$  with  $P' \subseteq V' \times ((V' \setminus S) \cup \Sigma)^*$ .

Let  $V_{\varepsilon} = \{A \in V' \mid A \Rightarrow_{G'}^* \varepsilon\}$ . We can find this set  $V_{\varepsilon}$  by first collecting all variables A with rule  $A \to \varepsilon \in P'$  and then successively adding additional variables B if there is a rule  $B \to A_1A_2 \dots A_k \in P'$  and the variables  $A_i$  are already in the set for all  $1 \leq i \leq k$ .

Context-free Grammars and  $\varepsilon$ -Rules

10 / 23

## Example

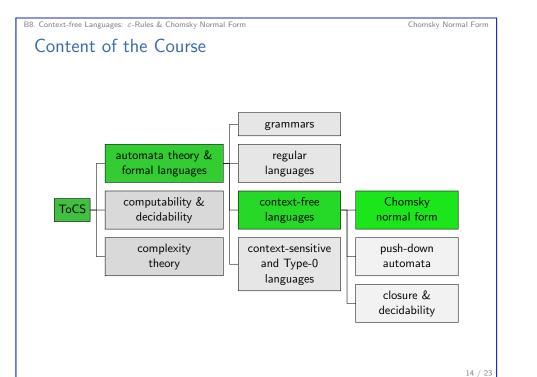
Consider  $G = \langle \{X, Y, Z, S\}, \{a, b\}, R, S \rangle$  with rules:

$$\begin{split} \mathbf{S} &\to \varepsilon \mid \mathbf{X} \mathbf{Y} \\ \mathbf{X} &\to \mathbf{a} \mathbf{X} \mathbf{Y} \mathbf{b} \mathbf{X} \mid \mathbf{Y} \mathbf{Z} \\ \mathbf{Y} &\to \varepsilon \mid \mathbf{b} \\ \mathbf{Z} &\to \varepsilon \mid \mathbf{a} \end{split}$$

B8. Context-free Languages: ε-Rules & Chomsky Normal Form

 $\rightsquigarrow$  blackboard

# B8.2 Chomsky Normal Form



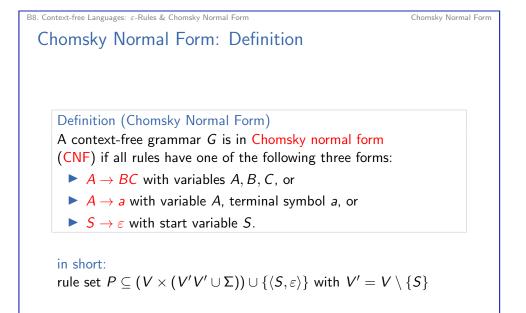
B8. Context-free Languages:  $\varepsilon$ -Rules & Chomsky Normal Form

## Chomsky Normal Form: Motivation

As in logical formulas (and other kinds of structured objects), normal forms for grammars are useful:

- they show which aspects are critical for defining grammars and which ones are just syntactic sugar
- they allow proofs and algorithms to be restricted to a limited set of grammars (inputs): those in normal form

Hence we now consider a normal form for context-free grammars.



German: Chomsky-Normalform

13 / 23

Chomsky Normal Form

# Chomsky Normal Form: Theorem

#### Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with  $\mathcal{L}(G) = \mathcal{L}(G')$ .

#### Proof.

The following algorithm converts the rule set of *G* into CNF:

#### Step 1: Eliminate rules of the form $A \rightarrow B$ with variables A, B.

If there are sets of variables  $\{B_1, \ldots, B_k\}$  with rules

 $B_1 \rightarrow B_2, B_2 \rightarrow B_3, \ldots, B_{k-1} \rightarrow B_k, B_k \rightarrow B_1,$ 

then replace these variables by a new variable  ${\cal B}.$ 

Define a strict total order < on the variables such that  $A \rightarrow B \in P$ implies that A < B. Iterate from the largest to the smallest variable A and eliminate all rules of the form  $A \rightarrow B$  while adding rules  $A \rightarrow w$  for every rule  $B \rightarrow w$  with  $w \in (V \cup \Sigma)^+$ . ...

17 / 23

B8. Context-free Languages:  $\varepsilon\text{-Rules}$  & Chomsky Normal Form

Chomsky Normal Form

19 / 23

Chomsky Normal Form

## Chomsky Normal Form: Theorem

#### Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with  $\mathcal{L}(G) = \mathcal{L}(G')$ .

## Proof (continued).

Step 3: Eliminate rules of the form  $A \rightarrow B_1B_2...B_k$  with k > 2For every rule of the form  $A \rightarrow B_1B_2...B_k$  with k > 2, add new variables  $C_2,...,C_{k-1}$  and replace the rule with

 B8. Context-free Languages:  $\varepsilon\text{-Rules}$  & Chomsky Normal Form

Chomsky Normal Form

# Chomsky Normal Form: Theorem

## Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with  $\mathcal{L}(G) = \mathcal{L}(G')$ .

## Proof (continued).

```
Step 2: Eliminate rules with terminal symbols on the right-hand side that do not have the form A → a.
For every terminal symbol a ∈ Σ add a new variable A<sub>a</sub> and the rule A<sub>a</sub> → a.
Replace all terminal symbols in all rules that do not have the form A → a with the corresponding newly added variables. ...
```

18 / 23

B8. Context-free Languages:  $\varepsilon$ -Rules & Chomsky Normal Form

Example

Chomsky Normal Form

```
Consider G = \langle \{Y, Z, S\}, \{a, b\}, R, S \rangle with rules:
```

$$\begin{split} & S \rightarrow aZbY \mid Y \mid ab \\ & Y \rightarrow Z \mid b \\ & Z \rightarrow Y \mid bSa \end{split}$$

ightarrow blackboard

# Chomsky Normal Form: Length of Derivations

#### Observation

Let G be a grammar in Chomsky normal form, and let  $w \in \mathcal{L}(G)$  be a non-empty word generated by G. Then all derivations of w have exactly 2|w| - 1 derivation steps.

Why?

B8. Context-free Languages:  $\varepsilon$ -Rules & Chomsky Normal Form

# B8.3 Summary

21 / 23

Summarv

B8. Context-free Languages:  $\varepsilon\text{-Rules}$  & Chomsky Normal Form

Summary

- The restriction of ε-occurrences in rules is not necessary to characterize the set of context-free languages.
- Every context-free language has a grammar in Chomsky normal form. All rules have form
  - $A \rightarrow BC$  with variables A, B, C, or
  - $A \rightarrow a$  with variable A, terminal symbol a, or
  - $S \rightarrow \varepsilon$  with start variable S.

22 / 23

Summarv