Theory of Computer Science

B8. Context-free Languages: $\varepsilon\text{-Rules}$ & Chomsky Normal Form

Gabriele Röger

University of Basel

March 26, 2025

Theory of Computer Science

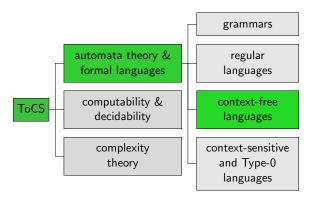
March 26, 2025 — B8. Context-free Languages: ε -Rules & Chomsky Normal Form

B8.1 Context-free Grammars and ε -Rules

B8.2 Chomsky Normal Form

B8.3 Summary

Content of the Course



B8.1 Context-free Grammars and $\varepsilon\textsc{-Rules}$

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with

- V finite set of variables,
- **2** Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- P ⊆ $(V × (V ∪ Σ)^+) ∪ {\langle S, \varepsilon \rangle}$ finite set of rules,
- **1** If $S \to \varepsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$.

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted. How about context-free grammars?

Context-free Grammars: Exercise

We have used the pumping lemma for regular languages to show that $L = \{a^nb^n \mid n \in \mathbb{N}_0\}$ is not regular.

Show that it is context-free by specifying a suitable grammar G with $\mathcal{L}(G) = L$.

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with

- V finite set of variables,
- **2** Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- P ⊆ $(V × (V ∪ Σ)^+) ∪ {\langle S, \varepsilon \rangle}$ finite set of rules,
- **1** If $S \to \varepsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$.

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted. How about context-free grammars?

Repetition: Context-free Grammars

Definition (Context-free Grammar)

A context-free grammar is a 4-tuple $\langle V, \Sigma, P, S \rangle$ with

- V finite set of variables,
- ② Σ finite alphabet of terminal symbols (with $V \cap \Sigma = \emptyset$),
- **1** If $S \to \varepsilon \in P$, then all other rules in $V \times ((V \setminus \{S\}) \cup \Sigma)^+$.

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs on a right-hand side.

With regular grammars, this restriction could be lifted. How about context-free grammars?

Reminder: Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

Theorem

For every grammar $G = \langle V, \Sigma, P, S \rangle$ there is a grammar $G' = \langle V', \Sigma, P', S \rangle$ with rules $P' \subseteq (V' \cup \Sigma)^+ \times (V' \setminus \{S\} \cup \Sigma)^*$ such that $\mathcal{L}(G) = \mathcal{L}(G')$.

In the proof we constructed a suitable grammar, where the rules in P' were not fundamentally different from the rules in P:

- ▶ for rules from $V \times (V \cup \Sigma)^+$, we only introduced additional rules from $V' \times (V' \cup \Sigma)^+$, and
- ▶ for rules from $V \times \varepsilon$, we only introduced rules from $V' \times \varepsilon$, where $V' = V \cup \{S'\}$ for some new variable $S' \notin V$.

ε -Rules

Theorem

For every grammar G with rules $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle V, \Sigma, P, S \rangle$ be a grammar with $P \subseteq V \times (V \cup \Sigma)^*$.

Let $G' = \langle V', \Sigma, P', S \rangle$ be a grammar with $\mathcal{L}(G) = \mathcal{L}(G')$ with $P' \subseteq V' \times ((V' \setminus S) \cup \Sigma)^*$.

Let $V_{\varepsilon} = \{A \in V' \mid A \Rightarrow_{G'}^* \varepsilon\}$. We can find this set V_{ε} by first collecting all variables A with rule $A \to \varepsilon \in P'$ and then successively adding additional variables B if there is a rule $B \to A_1 A_2 \dots A_k \in P'$ and the variables A_i are already in the set for all $1 \le i \le k$.

ε -Rules

Theorem

For every grammar G with rules $P \subseteq V \times (V \cup \Sigma)^*$ there is a context-free grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Let P'' be the rule set that is constructed from P' by

- adding rules that obviate the need for $A \to \varepsilon$ rules: for every existing rule $B \to w$ with $B \in V', w \in (V' \cup \Sigma)^+$, let I_{ε} be the set of positions where w contains a variable $A \in V_{\varepsilon}$. For every non-empty set $I' \subseteq I_{\varepsilon}$, add a new rule $B \to w'$, where w' is constructed from w by removing the variables at all positions in I'.
- removing all rules of the form $A \to \varepsilon$ $(A \neq S)$.

Then $G'' = \langle V', \Sigma, P'', S \rangle$ is context-free and $\mathcal{L}(G) = \mathcal{L}(G'')$.

Example

Consider
$$G = \langle \{X, Y, Z, S\}, \{a, b\}, R, S \rangle$$
 with rules:

$$S \rightarrow \varepsilon \mid XY$$

$$\mathsf{X} \to \mathtt{a} \mathsf{X} \mathsf{Y} \mathtt{b} \mathsf{X} \mid \mathsf{Y} \mathsf{Z}$$

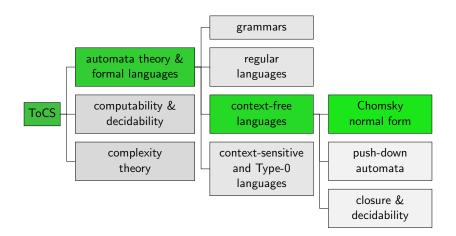
$$\mathsf{Y} o arepsilon \mid \mathtt{b}$$

$$\mathsf{Z} \to \varepsilon \mid \mathtt{a}$$

→ blackboard

B8.2 Chomsky Normal Form

Content of the Course



Chomsky Normal Form: Motivation

As in logical formulas (and other kinds of structured objects), normal forms for grammars are useful:

- they show which aspects are critical for defining grammars and which ones are just syntactic sugar
- they allow proofs and algorithms to be restricted to a limited set of grammars (inputs): those in normal form

Hence we now consider a normal form for context-free grammars.

Chomsky Normal Form: Definition

Definition (Chomsky Normal Form)

A context-free grammar G is in Chomsky normal form (CNF) if all rules have one of the following three forms:

- ightharpoonup A
 ightharpoonup BC with variables A, B, C, or
- ightharpoonup A
 ightharpoonup a with variable A, terminal symbol a, or
- ▶ $S \rightarrow \varepsilon$ with start variable S.

in short:

rule set
$$P \subseteq (V \times (V'V' \cup \Sigma)) \cup \{\langle S, \varepsilon \rangle\}$$
 with $V' = V \setminus \{S\}$

German: Chomsky-Normalform

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

The following algorithm converts the rule set of G into CNF:

Step 1: Eliminate rules of the form $A \rightarrow B$ with variables A, B.

If there are sets of variables $\{B_1,\ldots,B_k\}$ with rules $B_1\to B_2,B_2\to B_3,\ldots,B_{k-1}\to B_k,B_k\to B_1$, then replace these variables by a new variable B.

Define a strict total order < on the variables such that $A \to B \in P$ implies that A < B. Iterate from the largest to the smallest variable A and eliminate all rules of the form $A \to B$ while adding rules $A \to w$ for every rule $B \to w$ with $w \in (V \cup \Sigma)^+$

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Step 2: Eliminate rules with terminal symbols on the right-hand side that do not have the form $A \rightarrow a$.

For every terminal symbol $a \in \Sigma$ add a new variable A_a and the rule $A_a \to a$.

Replace all terminal symbols in all rules that do not have the form $A \rightarrow a$ with the corresponding newly added variables. . . .

Chomsky Normal Form: Theorem

Theorem

For every context-free grammar G there is a context-free grammar G' in Chomsky normal form with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Step 3: Eliminate rules of the form $A \rightarrow B_1 B_2 \dots B_k$ with k > 2

For every rule of the form $A \to B_1 B_2 \dots B_k$ with k > 2, add new variables C_2, \dots, C_{k-1} and replace the rule with

$$A \to B_1 C_2$$

$$C_2 \to B_2 C_3$$

:

$$C_{k-1} \rightarrow B_{k-1}B_k$$

Example

Consider $G = \langle \{Y, Z, S\}, \{a, b\}, R, S \rangle$ with rules:

$$S \to aZbY \mid Y \mid ab$$

$$Y \to Z \mid \mathtt{b}$$

$$Z \rightarrow Y \mid bSa$$

 \rightarrow blackboard

Chomsky Normal Form: Length of Derivations

Observation

Let G be a grammar in Chomsky normal form, and let $w \in \mathcal{L}(G)$ be a non-empty word generated by G.

Then all derivations of w have exactly 2|w|-1 derivation steps.

Why?

B8.3 Summary

Summary

- The restriction of ε -occurrences in rules is not necessary to characterize the set of context-free languages.
- Every context-free language has a grammar in Chomsky normal form. All rules have form
 - ightharpoonup A
 ightharpoonup BC with variables A, B, C, or
 - ightharpoonup A
 ightharpoonup a with variable A, terminal symbol a, or
 - ▶ $S \rightarrow \varepsilon$ with start variable S.