Theory of Computer Science

B7. Regular Languages: Pumping Lemma

Gabriele Röger

University of Basel

March 24, 2025

1 / 16

B7. Regular Languages: Pumping Lemma Pumping Lemma Pumping Lemma

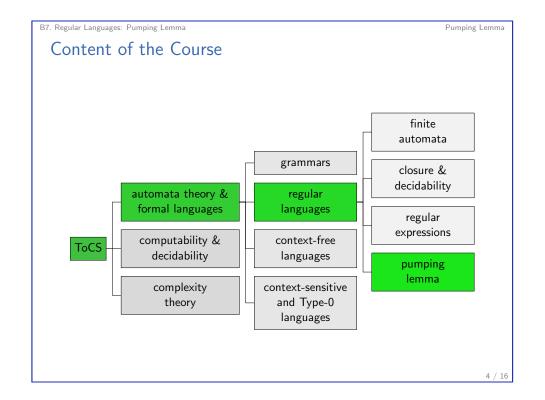
B7.1 Pumping Lemma

Theory of Computer Science

March 24, 2025 — B7. Regular Languages: Pumping Lemma

B7.1 Pumping Lemma

2 / 16



3 / 16

Pumping Lemma

Pumping Lemma: Motivation

You can show that
a language is regular by specifying
an appropriate grammar, finite
automaton, or regular expression.
How can you you show that a language
is not regular?

- Direct proof that no regular grammar exists that generates the language
 → difficult in general
- ▶ Pumping lemma: use a necessary property that holds for all regular languages.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

5 / 1

B7. Regular Languages: Pumping Lemma

Pumping Lemma

Pumping Lemma

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

- **1** |v| ≥ 1,
- $|uv| \leq p$, and
- **3** $uv^iw \in L$ for all i = 0, 1, 2, ...

Question: what if *L* is finite?

5 / 16

B7. Regular Languages: Pumping Lemma

Pumping Lemma

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

- **1** |v| ≥ 1,
- $|uv| \leq p$, and
- **3** $uv^iw \in L$ for all i = 0, 1, 2, ...

Proof.

For regular L there exists a DFA $M=\langle Q, \Sigma, \delta, q_0, E \rangle$ with $\mathcal{L}(M)=L$. We show that p=|Q| has the desired properties.

Consider an arbitrary $x \in \mathcal{L}(M)$ with length $|x| \geq |Q|$. Including the start state, M visits |x|+1 states while reading x. Because of $|x| \geq |Q|$ at least one state has to be visited twice.

B7. Regular Languages: Pumping Lemma

Pumping Lemma

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

- **1** $|v| \geq 1$,
- $|uv| \leq p$, and
- **3** $uv^iw \in L$ for all i = 0, 1, 2, ...

Proof (continued).

Choose a split x=uvw so M is in the same state after reading u and after reading uv. Obviously, we can choose the split in a way that $|v| \geq 1$ and $|uv| \leq |Q|$ are satisfied. . . .

Pumping Lemma

B7. Regular Languages: Pumping Lemma

Pumping Lemma: Proof

Theorem (Pumping Lemma)

If L is a regular language then there is a number $p \in \mathbb{N}$ (a pumping number for L) such that all words $x \in L$ with $|x| \ge p$ can be split into x = uvw with the following properties:

- **1** $|v| \geq 1$,
- $|uv| \leq p$, and
- **3** $uv^i w \in L$ for all i = 0, 1, 2, ...

Proof (continued).

The word v corresponds to a loop in the DFA after reading u and can thus be repeated arbitrarily often. Every subsequent continuation with w ends in the same end state as reading x.

Therefore $uv^iw \in \mathcal{L}(M) = L$ is satisfied for all $i = 0, 1, 2, \ldots$

Proof of Nonregularity

Pumping Lemma: Application

Using the pumping lemma (PL):

- ightharpoonup If L is regular, then the pumping lemma holds for L.
- ▶ By contraposition: if the PL does not hold for *L*, then *L* cannot be regular.
- ▶ That is: if there is no $p \in \mathbb{N}$ with the properties of the PL, then L cannot be regular.

10 / 16

9 / 16

B7. Regular Languages: Pumping Lemma

umping Lemma

Pumping Lemma: Caveat

Caveat:

The pumping lemma is a necessary condition for a language to be regular, but not a sufficient one.

- there are languages that satisfy the pumping lemma conditions but are not regular
- or such languages, other methods are needed to show that they are not regular (e.g., the Myhill-Nerode theorem)

B7. Regular Languages: Pumping Lemma

Pumping Lemma

Pumping Lemma

Pumping Lemma: Example

Example

The language $L = \{a^nb^n \mid n \in \mathbb{N}\}$ is not regular.

Proof.

Assume L is regular. Then let p be a pumping number for L.

The word $x = a^p b^p$ is in L and has length $\geq p$.

Let x = uvw be a split with the properties of the PL.

Then the word $x' = uv^2w$ is also in L. Since $|uv| \le p$, uv consists only of symbols a and $x' = a^{|u|}a^{2|v|}a^{p-|uv|}b^p = a^{p+|v|}b^p$.

Since $|v| \ge 1$ it follows that $p + |v| \ne p$ and thus $x' \notin L$.

This is a contradiction to the PL. \rightsquigarrow L is not regular.

Pumping Lemma: Another Example I

Example

The language $L = \{ab^nac^{n+2} \mid n \in \mathbb{N}\}$ is not regular.

Proof.

Assume L is regular. Then let p be a pumping number for L.

The word $x = ab^pac^{p+2}$ is in L and has length $\geq p$.

Let x = uvw be a split with the properties of the PL.

From $|uv| \le p$ and $|v| \ge 1$ we know that uv consists of one a followed by at most p-1 bs.

We distinguish two cases, |u| = 0 and |u| > 0.

13 / 16

B7. Regular Languages: Pumping Lemma

Pumping Lemma

Pumping Lemma: Exercise

This was an exam question in 2020:

Use the pumping lemma to prove that $L = \{a^m b^n \mid m \ge 0, n < m\}$ is not regular.

B7. Regular Languages: Pumping Lemma

Pumping Lemma: Another Example II

Example

The language $L = \{ab^nac^{n+2} \mid n \in \mathbb{N}\}$ is not regular.

Proof (continued).

If |u| = 0, then word v starts with an a.

Hence, $uv^0w = b^{p-|v|+1}ac^{p+2}$ does not start with symbol a and is therefore not in L. This is a contradiction to the PL.

If |u| > 0, then word v consists only of bs.

Consider $uv^0w = ab^{p-|v|}ac^{p+2}$. As $|v| \ge 1$, this word does not contain two more cs than bs and is therefore not in language L. This is a contradiction to the PL.

We have in all cases a contradiction to the PL.

 \rightsquigarrow *L* is not regular.

14 / 16

B7. Regular Languages: Pumping Lemma

Summai

Summary

► The pumping lemma can be used to show that a language is not regular.

15 / 16

16 / 16