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Formalisms for Regular Languages

DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

Are there other concepts with the same expressiveness?

Yes! ⇝ regular expressions

⇝ see it in the RealWorld�
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Reminder: Concatenation of Languages and Kleene Star

Concatenation

For two languages L1 (over Σ1) and L2 (over Σ2), the
concatenation of L1 and L2 is the language
L1L2 = {w1w2 ∈ (Σ1 ∪ Σ2)

∗ | w1 ∈ L1,w2 ∈ L2}.

Kleene star

For language L define

L0 = {ε}
L1 = L
Li+1 = LiL for i ∈ N>0

The definition of Kleene star on L is L∗ =
⋃

i≥0 L
i .
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Regular Expressions: Definition

Definition (Regular Expressions)

Regular expressions over an alphabet Σ are defined inductively:

∅ is a regular expression

ε is a regular expression

If a ∈ Σ, then a is a regular expression

If α and β are regular expressions, then so are:

(αβ) (concatenation)

(α|β) (alternative)
(α∗) (Kleene closure)

German: reguläre Ausdrücke, Verkettung, Alternative, kleenesche Hülle
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Regular Expressions: Omitting Parentheses

omitted parentheses by convention:

Kleene closure α∗ binds more strongly than concatenation αβ.

Concatenation binds more strongly than alternative α|β.
Parentheses for nested concatenations/alternatives are omitted
(we can treat them as left-associative; it does not matter).

Example: ab∗c|ε|abab∗ abbreviates ((((a(b∗))c)|ε)|(((ab)a)(b∗))).
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Regular Expressions: Examples

some regular expressions for Σ = {0, 1}:
0∗10∗

(0|1)∗1(0|1)∗

((0|1)(0|1))∗

01|10
0(0|1)∗0|1(0|1)∗1|0|1
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Regular Expressions: Language

Definition (Language Described by a Regular Expression)

The language described by a regular expression γ, written L(γ),
is inductively defined as follows:

If γ = ∅, then L(γ) = ∅.
If γ = ε, then L(γ) = {ε}.
If γ = a with a ∈ Σ, then L(γ) = {a}.
If γ = (αβ), where α and β are regular expressions,
then L(γ) = L(α)L(β).
If γ = (α|β), where α and β are regular expressions,
then L(γ) = L(α) ∪ L(β).
If γ = (α∗) where α is a regular expression,
then L(γ) = L(α)∗.

Examples: blackboard
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Regular Expressions: Exercise

Specify a regular expression that describes
L = {w ∈ {0, 1}∗ | every 0 in w is followed by at least one 1}.
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Questions

Questions?
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Regular Expressions vs. Regular
Languages
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Finite Languages Can Be Described By Regular Expressions

Theorem

Every finite language can be described by a regular expression.

Proof.

For every word w ∈ Σ∗, a regular expression describing
the language {w} can be built from regular expressions a ∈ Σ
by using concatenations.
(Use ε if w = ε.)

For every finite language L = {w1,w2, . . . ,wn},
a regular expression describing L can be built from the regular
expressions for {wi} by using alternatives.
(Use ∅ if L = ∅.)

We will see that this implies that all finite languages are regular.
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Regular Expressions Not More Powerful Than NFAs

Theorem

For every language that can be described by a regular expression,
there is an NFA that recognizes it.

Proof.

Let γ be a regular expression.
We show the statement by induction over the structure
of regular expressions.

For γ = ∅, γ = ε and γ = a, the following three NFAs recognize
L(γ):

γ = ∅: γ = ε: γ = a: a

For γ = (αβ), γ = (α|β) and γ = (α∗) we use the constructions
that we used to show that the regular languages are closed under
concatenation, union, and star, respectively.
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Regular Expression to NFA: Exercise

Construct an NFA that recognizes the language
that is described by the regular expression (ab|a)∗.
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DFAs Not More Powerful Than Regular Expressions

Theorem

Every language recognized by a DFA can be described
by a regular expression.

We can prove this using a generalization of NFAs.
We specify the corresponding algorithm.
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Generalized Nondeterministic Finite Automata (GNFAs)

GNFAs are like NFAs but the transition labels can be arbitrary
regular expressions over the input alphabet.

q0 q1

q2

q3
0∗1

11∗

(01)∗

0

ε

(00|1)∗
001

∅

0

For convenience, we require a special form:

The start state has a transition to
every other state but no incoming one.

One accept state ( ̸= start state)

The accept state has an incoming
transition from every other state but
no outgoing one.

For all other states, one transition
goes from every state to every other
state and also to itself.
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Generalized Nondeterministic Finite Automaton: Definition

Definition (Generalized Nondeterministic Finite Automata)

A generalized nondeterministic finite automaton (GNFA) is a
5-tuple M = ⟨Q,Σ, δ, qs , qa⟩ where

Q is the finite set of states

Σ is the input alphabet

δ : (Q \ {qa})× (Q \ {qs}) → RΣ is the transition function
(with RΣ the set of all regular expressions over Σ)

qs ∈ Q is the start state

qa ∈ Q is the accept state with qa ̸= qs .
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GNFA: Accepted Words

Definition (Words Accepted by a GNFA)

GNFA M = ⟨Q,Σ, δ, qs , qa⟩ accepts the word w
if w = w1 . . .wk , where each wi is in Σ∗

and a sequence of states q0, q1, . . . , qk ∈ Q exists with

1 q0 = qs ,

2 for each i , we have wi ∈ L(Ri ), where Ri = δ(qi−1, qi ), and

3 qk = qa.
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DFA to GNFA

We can transform every DFA into a GNFA of the special form:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

Add a new start state with an
ϵ-transition to the original start state.

Add a new accept state with
ϵ-transitions from the original accept
states.

Combine parallel transitions into one,
labelled with the alternative of the
original labels.

If required transitions are missing, add
transitions labelled with ∅.
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Conversion of GNFA to a Regular Expressions

Convert(M = ⟨Q,Σ, δ, qs , qa⟩)
1 If |Q| = 2 return δ(qs , qa).

2 Select any state q ∈ Q \ {qs , qa} and let
M ′ = ⟨Q \ {q},Σ, δ′, qs , qa⟩,
where for any qi ̸= qa and qj ̸= qs
we define

δ′(qi , qj) = (γ1)(γ2)
∗(γ3)|(γ4)

with
γ1 = δ(qi , q), γ2 = δ(q, q), γ3 = δ(q, qj), γ4 = δ(qi , qj).

3 Return Convert(M ′)
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Example

For DFA:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

⇒

q0

qs qa

1

ε

∅

0(0|1)∗

⇒

qs qa
1∗0(0|1)∗

Regular expression: 1∗0(0|1)∗
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Regular Languages vs. Regular Expressions

Theorem (Kleene)

The set of languages that can be described by regular expressions
is exactly the set of regular languages.

This follows directly from the previous two theorems.
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Questions

Questions?
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Summary

Regular expressions are another way to describe languages.

All regular languages can be described by regular expressions,
and all regular expressions describe regular languages.

Hence, they are equivalent to finite automata.
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