
Theory of Computer Science
B6. Regular Languages: Regular Expressions

Gabriele Röger

University of Basel

March 19, 2025

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions

Regular Expressions Regular Expressions vs. Regular Languages Summary

Content of the Course

ToCS

automata theory &
formal languages

grammars

regular
languages

finite
automata

closure &
decidability

regular
expressions

pumping
lemma

context-free
languages

context-sensitive
and Type-0
languages

computability &
decidability

complexity
theory

Regular Expressions Regular Expressions vs. Regular Languages Summary

Formalisms for Regular Languages

DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

Are there other concepts with the same expressiveness?

Yes! ⇝ regular expressions

⇝ see it in the RealWorld�

Regular Expressions Regular Expressions vs. Regular Languages Summary

Formalisms for Regular Languages

DFAs, NFAs and regular grammars can all describe
exactly the regular languages.

Are there other concepts with the same expressiveness?

Yes! ⇝ regular expressions

⇝ see it in the RealWorld�

Regular Expressions Regular Expressions vs. Regular Languages Summary

Reminder: Concatenation of Languages and Kleene Star

Concatenation

For two languages L1 (over Σ1) and L2 (over Σ2), the
concatenation of L1 and L2 is the language
L1L2 = {w1w2 ∈ (Σ1 ∪ Σ2)

∗ | w1 ∈ L1,w2 ∈ L2}.

Kleene star

For language L define

L0 = {ε}
L1 = L
Li+1 = LiL for i ∈ N>0

The definition of Kleene star on L is L∗ =
⋃

i≥0 L
i .

Regular Expressions Regular Expressions vs. Regular Languages Summary

Reminder: Concatenation of Languages and Kleene Star

Concatenation

For two languages L1 (over Σ1) and L2 (over Σ2), the
concatenation of L1 and L2 is the language
L1L2 = {w1w2 ∈ (Σ1 ∪ Σ2)

∗ | w1 ∈ L1,w2 ∈ L2}.

Kleene star

For language L define

L0 = {ε}
L1 = L
Li+1 = LiL for i ∈ N>0

The definition of Kleene star on L is L∗ =
⋃

i≥0 L
i .

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions: Definition

Definition (Regular Expressions)

Regular expressions over an alphabet Σ are defined inductively:

∅ is a regular expression

ε is a regular expression

If a ∈ Σ, then a is a regular expression

If α and β are regular expressions, then so are:

(αβ) (concatenation)

(α|β) (alternative)
(α∗) (Kleene closure)

German: reguläre Ausdrücke, Verkettung, Alternative, kleenesche Hülle

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions: Omitting Parentheses

omitted parentheses by convention:

Kleene closure α∗ binds more strongly than concatenation αβ.

Concatenation binds more strongly than alternative α|β.
Parentheses for nested concatenations/alternatives are omitted
(we can treat them as left-associative; it does not matter).

Example: ab∗c|ε|abab∗ abbreviates ((((a(b∗))c)|ε)|(((ab)a)(b∗))).

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions: Examples

some regular expressions for Σ = {0, 1}:
0∗10∗

(0|1)∗1(0|1)∗

((0|1)(0|1))∗

01|10
0(0|1)∗0|1(0|1)∗1|0|1

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions: Language

Definition (Language Described by a Regular Expression)

The language described by a regular expression γ, written L(γ),
is inductively defined as follows:

If γ = ∅, then L(γ) = ∅.
If γ = ε, then L(γ) = {ε}.
If γ = a with a ∈ Σ, then L(γ) = {a}.
If γ = (αβ), where α and β are regular expressions,
then L(γ) = L(α)L(β).
If γ = (α|β), where α and β are regular expressions,
then L(γ) = L(α) ∪ L(β).
If γ = (α∗) where α is a regular expression,
then L(γ) = L(α)∗.

Examples: blackboard

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions: Exercise

Specify a regular expression that describes
L = {w ∈ {0, 1}∗ | every 0 in w is followed by at least one 1}.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Questions

Questions?

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions vs. Regular
Languages

Regular Expressions Regular Expressions vs. Regular Languages Summary

Finite Languages Can Be Described By Regular Expressions

Theorem

Every finite language can be described by a regular expression.

Proof.

For every word w ∈ Σ∗, a regular expression describing
the language {w} can be built from regular expressions a ∈ Σ
by using concatenations.
(Use ε if w = ε.)

For every finite language L = {w1,w2, . . . ,wn},
a regular expression describing L can be built from the regular
expressions for {wi} by using alternatives.
(Use ∅ if L = ∅.)

We will see that this implies that all finite languages are regular.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Finite Languages Can Be Described By Regular Expressions

Theorem

Every finite language can be described by a regular expression.

Proof.

For every word w ∈ Σ∗, a regular expression describing
the language {w} can be built from regular expressions a ∈ Σ
by using concatenations.
(Use ε if w = ε.)

For every finite language L = {w1,w2, . . . ,wn},
a regular expression describing L can be built from the regular
expressions for {wi} by using alternatives.
(Use ∅ if L = ∅.)

We will see that this implies that all finite languages are regular.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Finite Languages Can Be Described By Regular Expressions

Theorem

Every finite language can be described by a regular expression.

Proof.

For every word w ∈ Σ∗, a regular expression describing
the language {w} can be built from regular expressions a ∈ Σ
by using concatenations.
(Use ε if w = ε.)

For every finite language L = {w1,w2, . . . ,wn},
a regular expression describing L can be built from the regular
expressions for {wi} by using alternatives.
(Use ∅ if L = ∅.)

We will see that this implies that all finite languages are regular.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Finite Languages Can Be Described By Regular Expressions

Theorem

Every finite language can be described by a regular expression.

Proof.

For every word w ∈ Σ∗, a regular expression describing
the language {w} can be built from regular expressions a ∈ Σ
by using concatenations.
(Use ε if w = ε.)

For every finite language L = {w1,w2, . . . ,wn},
a regular expression describing L can be built from the regular
expressions for {wi} by using alternatives.
(Use ∅ if L = ∅.)

We will see that this implies that all finite languages are regular.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions Not More Powerful Than NFAs

Theorem

For every language that can be described by a regular expression,
there is an NFA that recognizes it.

Proof.

Let γ be a regular expression.
We show the statement by induction over the structure
of regular expressions.

For γ = ∅, γ = ε and γ = a, the following three NFAs recognize
L(γ):

γ = ∅: γ = ε: γ = a: a

For γ = (αβ), γ = (α|β) and γ = (α∗) we use the constructions
that we used to show that the regular languages are closed under
concatenation, union, and star, respectively.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions Not More Powerful Than NFAs

Theorem

For every language that can be described by a regular expression,
there is an NFA that recognizes it.

Proof.

Let γ be a regular expression.
We show the statement by induction over the structure
of regular expressions.

For γ = ∅, γ = ε and γ = a, the following three NFAs recognize
L(γ):

γ = ∅: γ = ε: γ = a: a

For γ = (αβ), γ = (α|β) and γ = (α∗) we use the constructions
that we used to show that the regular languages are closed under
concatenation, union, and star, respectively.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions Not More Powerful Than NFAs

Theorem

For every language that can be described by a regular expression,
there is an NFA that recognizes it.

Proof.

Let γ be a regular expression.
We show the statement by induction over the structure
of regular expressions.

For γ = ∅, γ = ε and γ = a, the following three NFAs recognize
L(γ):

γ = ∅: γ = ε: γ = a: a

For γ = (αβ), γ = (α|β) and γ = (α∗) we use the constructions
that we used to show that the regular languages are closed under
concatenation, union, and star, respectively.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expressions Not More Powerful Than NFAs

Theorem

For every language that can be described by a regular expression,
there is an NFA that recognizes it.

Proof.

Let γ be a regular expression.
We show the statement by induction over the structure
of regular expressions.

For γ = ∅, γ = ε and γ = a, the following three NFAs recognize
L(γ):

γ = ∅: γ = ε: γ = a: a

For γ = (αβ), γ = (α|β) and γ = (α∗) we use the constructions
that we used to show that the regular languages are closed under
concatenation, union, and star, respectively.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Expression to NFA: Exercise

Construct an NFA that recognizes the language
that is described by the regular expression (ab|a)∗.

Regular Expressions Regular Expressions vs. Regular Languages Summary

DFAs Not More Powerful Than Regular Expressions

Theorem

Every language recognized by a DFA can be described
by a regular expression.

We can prove this using a generalization of NFAs.
We specify the corresponding algorithm.

Regular Expressions Regular Expressions vs. Regular Languages Summary

DFAs Not More Powerful Than Regular Expressions

Theorem

Every language recognized by a DFA can be described
by a regular expression.

We can prove this using a generalization of NFAs.
We specify the corresponding algorithm.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Generalized Nondeterministic Finite Automata (GNFAs)

GNFAs are like NFAs but the transition labels can be arbitrary
regular expressions over the input alphabet.

q0 q1

q2

q3
0∗1

11∗

(01)∗

0

ε

(00|1)∗
001

∅

0

For convenience, we require a special form:

The start state has a transition to
every other state but no incoming one.

One accept state (̸= start state)

The accept state has an incoming
transition from every other state but
no outgoing one.

For all other states, one transition
goes from every state to every other
state and also to itself.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Generalized Nondeterministic Finite Automaton: Definition

Definition (Generalized Nondeterministic Finite Automata)

A generalized nondeterministic finite automaton (GNFA) is a
5-tuple M = ⟨Q,Σ, δ, qs , qa⟩ where

Q is the finite set of states

Σ is the input alphabet

δ : (Q \ {qa})× (Q \ {qs}) → RΣ is the transition function
(with RΣ the set of all regular expressions over Σ)

qs ∈ Q is the start state

qa ∈ Q is the accept state with qa ̸= qs .

Regular Expressions Regular Expressions vs. Regular Languages Summary

GNFA: Accepted Words

Definition (Words Accepted by a GNFA)

GNFA M = ⟨Q,Σ, δ, qs , qa⟩ accepts the word w
if w = w1 . . .wk , where each wi is in Σ∗

and a sequence of states q0, q1, . . . , qk ∈ Q exists with

1 q0 = qs ,

2 for each i , we have wi ∈ L(Ri), where Ri = δ(qi−1, qi), and

3 qk = qa.

Regular Expressions Regular Expressions vs. Regular Languages Summary

DFA to GNFA

We can transform every DFA into a GNFA of the special form:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

Add a new start state with an
ϵ-transition to the original start state.

Add a new accept state with
ϵ-transitions from the original accept
states.

Combine parallel transitions into one,
labelled with the alternative of the
original labels.

If required transitions are missing, add
transitions labelled with ∅.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Conversion of GNFA to a Regular Expressions

Convert(M = ⟨Q,Σ, δ, qs , qa⟩)
1 If |Q| = 2 return δ(qs , qa).

2 Select any state q ∈ Q \ {qs , qa} and let
M ′ = ⟨Q \ {q},Σ, δ′, qs , qa⟩,
where for any qi ̸= qa and qj ̸= qs
we define

δ′(qi , qj) = (γ1)(γ2)
∗(γ3)|(γ4)

with
γ1 = δ(qi , q), γ2 = δ(q, q), γ3 = δ(q, qj), γ4 = δ(qi , qj).

3 Return Convert(M ′)

Regular Expressions Regular Expressions vs. Regular Languages Summary

Example

For DFA:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

⇒

q0

qs qa

1

ε

∅

0(0|1)∗

⇒

qs qa
1∗0(0|1)∗

Regular expression: 1∗0(0|1)∗

Regular Expressions Regular Expressions vs. Regular Languages Summary

Example

For DFA:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

⇒

q0

qs qa

1

ε

∅

0(0|1)∗

⇒

qs qa
1∗0(0|1)∗

Regular expression: 1∗0(0|1)∗

Regular Expressions Regular Expressions vs. Regular Languages Summary

Example

For DFA:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

⇒

q0

qs qa

1

ε

∅

0(0|1)∗

⇒

qs qa
1∗0(0|1)∗

Regular expression: 1∗0(0|1)∗

Regular Expressions Regular Expressions vs. Regular Languages Summary

Example

For DFA:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

⇒

q0

qs qa

1

ε

∅

0(0|1)∗

⇒

qs qa
1∗0(0|1)∗

Regular expression: 1∗0(0|1)∗

Regular Expressions Regular Expressions vs. Regular Languages Summary

Example

For DFA:

q0 q1
0

1

0,1

q0

qs

q1

qa

0

1

0|1

ε ε
∅

∅

∅

∅

⇒

q0

qs qa

1

ε

∅

0(0|1)∗

⇒

qs qa
1∗0(0|1)∗

Regular expression: 1∗0(0|1)∗

Regular Expressions Regular Expressions vs. Regular Languages Summary

Regular Languages vs. Regular Expressions

Theorem (Kleene)

The set of languages that can be described by regular expressions
is exactly the set of regular languages.

This follows directly from the previous two theorems.

Regular Expressions Regular Expressions vs. Regular Languages Summary

Questions

Questions?

Regular Expressions Regular Expressions vs. Regular Languages Summary

Summary

Regular Expressions Regular Expressions vs. Regular Languages Summary

Summary

Regular expressions are another way to describe languages.

All regular languages can be described by regular expressions,
and all regular expressions describe regular languages.

Hence, they are equivalent to finite automata.

	Regular Expressions
	

	Regular Expressions vs. Regular Languages
	

	Summary

