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Further Analysis

We can convert freely between regular grammars, DFAs and NFAs.
So don't let's analyse them individually but instead focus on the
corresponding class of regular languages:

m With what operations can we “combine” regular languages
and the result is again a regular language?
E.g. is the intersection of two regular languages regular?

m What general questions can we resolve algorithmically
for any regular language?
E.g. is there an algorithm that takes a regular grammars and a
word as input and returns whether the word is in the
generated language?
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Closure Properties

How can we combine
regular languages
so that the result is guaranteed
to be regular as well?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Concatenation of Languages

Concatenation

m For two languages Ly (over X1) and L (over X3), the
concatenation of Ly and L; is the language
L1l = {W1W2 € (21 U 22)* ’ wy € Li,wp € Lg}.
m [; = {Pancake, Waffle}
L, = {withlceCream, withMushrooms, withCheese}
L1Ly = {PancakewithlceCream, PancakewithMushrooms,
PancakewithCheese, WafflewithlceCream,
WafflewithMushrooms, WafflewithCheese}

German: Produkt
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Kleene Star
Kleene star
m For language L define
m 0= {c}
m =1L

m LTt =[] for i € Nsg
m Definition of (Kleene) star on L: L* =], L.
m [ = {ding,dong} .
L* = {e, ding, dong, dingding, dingdong, dongding,
dongdong, dingdingding, dingdingdong, . .. }

German: (Kleen)-Stern
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Set Operations

Let L and L’ be regular languages over ¥ and ¥/, respectively.

Languages are just sets of words, so we can also consider the
standard set operations:

munion LUL ={w|weLlorwel'} overxU¥Y
m intersection LN L' ={w|w e Land we L'} over LNY
m complement L ={w € * | w ¢ L} over ¥
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Closure Properties

General terminology: What do we mean with closure?

Definition (Closure)

Let IC be a class of languages.
Then K is closed. . .

m ...under union if L, L' € K implies LUL € K
.. under intersection if L, L’ € K implies LN L' € K
..under complement if L € K implies L € K
.. under concatenation if L, L’ € K implies LL' € K
..under star if L € KC implies L* € K

German: Abgeschlossenheit, K ist abgeschlossen unter Vereinigung,
Schnitt, Komplement, Produkt, Stern
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Closure Properties of Regular Languages: Union

The regular languages are closed under union. I
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Closure Properties of Regular Languages: Union
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Closure Properties of Regular Languages: Union

Let L3, L, be regular languages.
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NFAs with £(M;) = Ly and £(M,) = Lp. W.lo.g. Q1N Qs = 0.
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Closure Properties of Regular Languages: Union

Let L3, L, be regular languages.

Let My = (Q1,X1,01,q1, F1) and My = (@2, X2,02, g2, F2) be
NFAs with £(M;) = Ly and £(M,) = Lp. W.lo.g. Q1N Qs = 0.

Then NFA M = <Q,Zl UX,,d,q0, F1 U F2> with

mqgo ¢ Q1UQ and

m Q={q}UQ UG,

mforallge Q,ac X UXU{e}
01(g,a) fge @ andaec X;U{e}
d2(q,a) ifge @ and ae XrU{e}
{g1,92} ifg=qoand a=c¢
0 otherwise

6(q,a) =

recognizes L1 U L. O
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The proof idea for the closure under
concatenation is very similar to the one for union.
Can you figure it out yourself?
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Closure Properties of Regular Languages: Concatenation
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Closure Properties of Regular Languages: Concatenation

The regular languages are closed under concatenation. I

Proof idea:

0,1
1
"@‘/O\K@o@ zog/gofz'\o@
1 0 €

1
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Closure Properties of Regular Languages: Concatenation

The regular languages are closed under concatenation. I

Proof idea:
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Closure Properties of Regular Languages: Concatenation

Let Ly, Ly be regular languages.
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Closure Properties of Regular Languages: Concatenation

Let Ly, Ly be regular languages.

Let My = (Q1,%1,01,q1, F1) and My = (@2, X2, 02, g2, F) be
NFAs with £(M;) = L1 and £(M2) = L. W.lo.g. Q1N Q2 = 0.
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Closure Properties of Regular Languages: Concatenation

Let L;, Ly be regular languages.

Let My = (Q1,%1,01,q1, F1) and My = (@2, X2, 02, g2, F) be
NFAs with £(M;) = L1 and £(M2) = L. W.lo.g. Q1N Q2 = 0.

Then NFA M = <Ql @] Q2,Zl Uxs,9,q1, F2> with
mforallge Q,ac X UXU{e}

((51(q, a) ifge @\ FLand a€ X U{e}
91(q, a) ifge Frand ae X
0(q,a) =< 01(q,a) U{qx} ifgeFanda=¢
92(q, a) if ge @ and a € XU {e}
0 otherwise

recognizes LiL,. ]




Closure Properties
000000000000e000000

Closure Properties of Regular Languages: Star

The regular languages are closed under star. I
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Closure Properties of Regular Languages: Star

The regular languages are closed under star. I

Proof idea:
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Closure Properties of Regular Languages: Star

The regular languages are closed under star. I

Proof idea:

1 1, ¢ 0
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Closure Properties of Regular Languages: Star

Let L be a regular language.
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Closure Properties of Regular Languages: Star

Let L be a regular language.
Let M = (Q, %, 9, qo, F) be an NFA with £L(M) = L.
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Closure Properties of Regular Languages: Star

Let L be a regular language.
Let M = (Q, %, 9, qo, F) be an NFA with £L(M) = L.
Then NFA M’ = (Q', X, 0, g5, F U {qg(}) with

mq ¢ Q,

B Q' =QU{q} and

mforallge Q,ac XU {e}

d(q, ) ifge Q\F

(g, a) ifge Fandae X
8'(q,a) =< 8(q,a) U{qo} ifgeFanda=¢

{qo} ifg=gqpand a=¢

0 otherwise

recognizes L*. [
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Closure Properties of Regular Languages: Complement

The regular languages are closed under complement. I

Let L be a regular language.
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Closure Properties of Regular Languages: Complement

The regular languages are closed under complement. I

Let L be a regular language.
Let M = (Q, %, 9, qo, F) be a DFA with L(M) = L.
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Closure Properties of Regular Languages: Complement

The regular languages are closed under complement. I

Let L be a regular language.
Let M = (Q, %, 9, qo, F) be a DFA with L(M) = L.
Then M' = (Q,%,9,qo, @\ F) is a DFA with £L(M') = L. O
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Closure Properties of Regular Languages: Intersection

The regular languages are closed under intersection. \

Let Ly, Ly be regular languages.

G V4 DU S + +
e Tz protaeaereorra’t
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Closure Properties of Regular Languages: Intersection

The regular languages are closed under intersection. \

Let Ly, Ly be regular languages.

Let My = (Q1,%1,01, go1, F1) and My = (@2, X2, 02, qo2, F2) be
DFAs with £(Mi) = Ly and £(Ms) = L.

G V4 DU S + +
e Tz protaeaereorra’t
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Closure Properties of Regular Languages: Intersection

The regular languages are closed under intersection. \

Let Ly, Ly be regular languages.

Let My = (Q1,%1,01, go1, F1) and My = (@2, X2, 02, qo2, F2) be
DFAs with £(Mi) = Ly and £(Ms) = L.

The product automaton

= (Q1 x Q2,X1 N X2,6,(q01,902), F1 x F2)

with 6((q1, 42), a) = (01(q1, a), 92(q2, a))
accepts L’(M) £ (lMl) N E(Mg) O

erfratt I\ICULIJIUUUF\LGULUIIIGL
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Product Automaton: Blackboard
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Introduction Closure Properties

Closure Properties of Regular Languages

In summary. ..

The regular languages are closed under:
® union

intersection

concatenation

[
m complement
[
[

star )
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Decision Problems and Decidability (1)

“Intuitive Definition:" Decision Problem, Decidability

A decision problem is an algorithmic problem where
m for a given input
m an algorithm determines if the input has a given property
m and then produces the output “yes” or “no” accordingly.

A decision problem is decidable if an algorithm for it
(that always terminates and gives the correct answer) exists.

Note: “exists” # “is known"

German: Entscheidungsproblem, Eingabe, Eigenschaft, Ausgabe,
entscheidbar
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Introduction

Decision Problems and Decidability (2)

Notes:
m not a formal definition: we did not formally define
“algorithm”, “input”, “output” etc. (which is not trivial)
m lack of a formal definition makes it difficult to prove
that something is not decidable
~ studied thoroughly in the next part of the course
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Decision Problems: Example

For now we describe decision problems in a semi-formal
“given” / “question” way:

Example (Emptiness Problem for Regular Languages)

The emptiness problem Py for regular languages
is the following problem:

Given: regular grammar G
Question: Is L(G) = 0?

German: Leerheitsproblem



Decidability
0000®0000000000

Word Problem

Definition (Word Problem for Regular Languages)

The word problem P for regular languages is:

Given: regular grammar G with alphabet &
and word w € ©*
Question: Is w € L(G)?

German: Wortproblem (fiir regulare Sprachen)
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Introduction

Decidability: Word Problem

The word problem for regular languages is decidable. \

Construct a DFA M with £L(M) = L(G).
(The proofs in Chapter B4 describe a possible method.)

Simulate M on input w. The simulation ends after |w| steps.

The DFA M is in an accept state after this iff w € L(G).
Return “yes” or “no” accordingly. [
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Emptiness Problem

Definition (Emptiness Problem for Regular Languages)

The emptiness problem Py for regular languages is:

Given: regular grammar G
Question: Is L(G) = 0?

German: Leerheitsproblem
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Decidability: Emptiness Problem

The emptiness problem for regular languages is decidable. \

Construct a DFA M with £(M) = L(G).

We have £(G) = () iff in the transition diagram of M
there is no path from the start state to any accept state.

This can be checked with standard graph algorithms
(e.g., breadth-first search). O
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Finiteness Problem

Definition (Finiteness Problem for Regular Languages)

The finiteness problem P.. for regular languages is:

Given: regular grammar G
Question: Is |£(G)| < 00?

German: Endlichkeitsproblem
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Decidability: Finiteness Problem

The finiteness problem for regular languages is decidable. \

Construct a DFA M with £L(M) = L(G).

We have |£(G)| = oo iff in the transition diagram of M
there is a cycle that is reachable from the start state
and from which an accept state can be reached.

This can be checked with standard graph algorithms. [
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Intersection Problem

Definition (Intersection Problem for Regular Languages)

The intersection problem Pp for regular languages is:

Given: regular grammars G and G’
Question: Is L(G) N L(G") = (@7

German: Schnittproblem
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Decidability: Intersection Problem

The intersection problem for regular languages is decidable. \

Using the closure of regular languages under intersection,
we can construct (e.g., by converting to DFAs, constructing

the product automaton, then converting back to a grammar)

a grammar G” with £(G") = L(G) N L(G’)

and use the algorithm for the emptiness problem Py. O




Decidability
000000000000800

Equivalence Problem

Definition (Equivalence Problem for Regular Languages)

The equivalence problem P_ for regular languages is:

Given: regular grammars G and G’
Question: Is £(G) = L(G')?

German: Aquivalenzproblem
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Decidability: Equivalence Problem

The equivalence problem for regular languages is decidable. \

In general for languages L and L', we have

L="Liff(LnLYyu(LnL)=0.

The regular languages are closed under intersection, union
and complement, and we know algorithms for these operations.

We can therefore construct a grammar for (LN L") U (LN L")
and use the algorithm for the emptiness problem Py. Ol

v
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Questions

o
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Questions?
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Summary

m The regular languages are closed under all usual operations
(union, intersection, complement, concatenation, star).

m All usual decision problems (word problem, emptiness,
finiteness, intersection, equivalence) are decidable
for regular languages.
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