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Further Analysis

We can convert freely between regular grammars, DFAs and NFAs.
So don't let’s analyse them individually but instead focus on the
corresponding class of regular languages:

» With what operations can we “combine” regular languages
and the result is again a regular language?
E.g. is the intersection of two regular languages regular?

» What general questions can we resolve algorithmically
for any regular language?
E.g. is there an algorithm that takes a regular grammars and a
word as input and returns whether the word is in the
generated language?
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B5.2 Closure Properties
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Closure Properties
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Concatenation of Languages

Concatenation

» For two languages L; (over X1) and L, (over ¥5), the
concatenation of L1 and Ly is the language
Lily, = {W1W2 (S (Zl UZQ)* ’ wi € Li,wp € L2}.
» L[; = {Pancake, Waffle}
Ly = {withlceCream, withMushrooms, withCheese}
L; L, = {PancakewithlceCream, PancakewithMushrooms,
PancakewithCheese, WafflewithlceCream,
WafflewithMushrooms, WafflewithCheese}

German: Produkt

Closure Properties
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Kleene Star
Kleene star
» For language L define
> 0= {c}
> 1=

> [ =[] for i € Nyg
> Definition of (Kleene) star on L: L* =[], L".

» [ = {ding,dong}
L* = {¢,ding, dong, dingding, dingdong, dongding,
dongdong, dingdingding, dingdingdong, ... }

German: (Kleen)-Stern
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Set Operations

Let L and L’ be regular languages over * and Y/, respectively.

Languages are just sets of words, so we can also consider the
standard set operations:

» union LUL'={w|weLlLorwel} overxUY’
» intersection LN L' ={w|w e Land we L'} over LN’
» complement L={w € X*|w¢ L} over X
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Closure Properties
General terminology: What do we mean with closure?
Definition (Closure)
Let K be a class of languages.
Then K is closed. . .
» ...under union if L,L’ € K implies LUL € K
» . ..under intersection if L, L' € K implies LNL' € K
» ...under complement if L € K implies L € K
» ...under concatenation if L, L € K implies LL' € K
> .. .under star if L € K implies L* € K
German: Abgeschlossenheit, K ist abgeschlossen unter Vereinigung,
Schnitt, Komplement, Produkt, Stern s
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Closure Properties of Regular Languages: Union

Theorem
The regular languages are closed under union.

Proof idea:
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Closure Properties of Regular Languages: Union

Proof.
Let L1, L be regular languages.

Let My = (Q1,X1,61,q1, F1) and Mo = (Q2, X2, 02, g2, F2) be
NFAs with E(Ml) = Ll and E(Mg) = L2. Wlog Ql N QQ = Q)

Then NFA M = <Q,Zl U 22,(5, qo, R U F2> with

> qo ¢ @1 U Q2 and

» Q={q}UQUQ,

> forallge Q,ac L1 UXU{e}
01(g,a) ifqge @ andacX;U{e}
02(g,a) ifge @ and ae€ XU {c}
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Closure Properties of Regular Languages: Concatenation

The proof idea for the closure under
concatenation is very similar to the one for union.
Can you figure it out yourself?
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d(q,a) = .
{q1,q2} ifg=qoanda=c¢
0 otherwise
recognizes Ly U L. O
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Closure Properties of Regular Languages: Concatenation

Theorem
The regular languages are closed under concatenation.

Proof idea:
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Closure Properties of Regular Languages: Concatenation

Proof.
Let Ly, Ly be regular languages.

Let My = (Q1,%1,01,q1, F1) and My = (@2, X2, 02, g2, F2) be
NFAs with ﬁ(/\/’l) =1L; and ﬁ(/\/’g) =1y Wlog Q1NQ= 0.

Then NFA M = (Q1 U @2, ¥1 U X2, 6, q1, F2) with
> forallge Q,aec L1 UX,U{e}

(61(q, a) ifge @\ Fandac X U{e}
01(q, a) ifge Frandae ¥y
d(q,a) =14 1(g,a)U{q} ifgeFanda=¢
92(q, a) if g€ Q and a€ XU {e}
0 otherwise
recognizes LyL,. OJ
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Closure Properties of Regular Languages: Star

Theorem
The regular languages are closed under star.

Proof idea:

1 11e 0

Closure Properties
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Closure Properties of Regular Languages: Star

Proof.
Let L be a regular language.

Let M =(Q, %, 6, qo, F) be an NFA with L(M) = L.
Then NFA M' = (Q', X, 0", qp, F U {qp}) with

> q ¢ Q,

> Q' =QuU{qg}, and

> forallge Q,ac X U{e}

d(q, a) ifge Q\F
i(q, a) fgeFandacX
8(g,a) =< 6(q,a)U{qo} ifge Fanda=c¢
{q0} ifg=gqpand a=¢
0 otherwise
recognizes L*. [

Closure Properties
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Closure Properties of Regular Languages: Complement

Theorem
The regular languages are closed under complement.

Proof.
Let L be a regular language.

Let M = (Q, %, 5, qo, F) be a DFA with £(M) = L.

Then M’ = (Q,%,6,q0, Q\ F) is a DFA with £L(M’) = L. O

Closure Properties
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Closure Properties of Regular Languages: Intersection

Theorem
The regular languages are closed under intersection.

Proof.
Let L1, Ly be regular languages.

Let My = (Q1,X1,01, o1, F1) and Mo = (@2, X2, 92, qoz, F2) be
DFAs with £(M,) = Ly and £(M,) = Lo.

The product automaton
M = (Q1 x Q2,21 N X2,0,(qo1, Go2), F1 x F2)

with 6({(q1, g2), a) = (01(q1, a), 92(q2, a))

accepts L(M) = L(M1) N L(M). O

German: Kreuzproduktautomat

Closure Properties
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Product Automaton: Example

Product Automaton: Blackboard

Closure Properties
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Closure Properties of Regular Languages

In summary. ..

Theorem
The regular languages are closed under:

» union

intersection

>

» complement
» concatenation
>

star
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Decision Problems and Decidability (1)

“Intuitive Definition:" Decision Problem, Decidability
A decision problem is an algorithmic problem where

> for a given input
» an algorithm determines if the input has a given property

» and then produces the output “yes” or “no” accordingly.

A decision problem is decidable if an algorithm for it
(that always terminates and gives the correct answer) exists.

Note: “exists” # "is known"

German: Entscheidungsproblem, Eingabe, Eigenschaft, Ausgabe,
entscheidbar

Decidability
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Decision Problems and Decidability (2)

Notes:

» not a formal definition: we did not formally define
“algorithm”, “input”, “output” etc. (which is not trivial)

> lack of a formal definition makes it difficult to prove
that something is not decidable

~ studied thoroughly in the next part of the course
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Word Problem
Definition (Word Problem for Regular Languages)
The word problem P¢ for regular languages is:
Given: regular grammar G with alphabet X
and word w € *
Question: Is w € L(G)?
German: Wortproblem (fiir regulare Sprachen)
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Decision Problems: Example

For now we describe decision problems in a semi-formal

“given” / “question” way:

Example (Emptiness Problem for Regular Languages)

The emptiness problem Py for regular languages

is the following problem:

Given: regular grammar G
Question: Is £(G) = 0?
German: Leerheitsproblem
26 / 38
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Decidability: Word Problem

Theorem

The word problem for regular languages is decidable.

Proof.

Construct a DFA M with £L(M) = L(G).

(The proofs in Chapter B4 describe a possible method.)

Simulate M on input w. The simulation ends after |w| steps.

The DFA M is in an accept state after this iff w € £(G).

Return “yes” or “no" accordingly. 0J
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Emptiness Problem

Definition (Emptiness Problem for Regular Languages)
The emptiness problem Py for regular languages is:

Given: regular grammar G
Question: Is £(G) = 0?

German: Leerheitsproblem

29 / 38

B5. Regular Languages: Closure Properties and Decidability Decidability

Finiteness Problem

Definition (Finiteness Problem for Regular Languages)
The finiteness problem P for regular languages is:

Given: regular grammar G
Question: Is |[£(G)] < 007

German: Endlichkeitsproblem
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Decidability: Emptiness Problem

Theorem

The emptiness problem for regular languages is decidable.

Proof.

Construct a DFA M with L(M) = L(G).

We have £(G) = () iff in the transition diagram of M

there is no path from the start state to any accept state.

This can be checked with standard graph algorithms

(e.g., breadth-first search). O
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Decidability: Finiteness Problem

Theorem

The finiteness problem for regular languages is decidable.

Proof.

Construct a DFA M with £L(M) = L(G).

We have |£(G)| = oo iff in the transition diagram of M

there is a cycle that is reachable from the start state

and from which an accept state can be reached.

This can be checked with standard graph algorithms. ]
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Decidability: Intersection Problem

Theorem
The intersection problem for regular languages is decidable.

Proof.

Using the closure of regular languages under intersection,

we can construct (e.g., by converting to DFAs, constructing
the product automaton, then converting back to a grammar)
a grammar G” with £(G") = L(G) N L(G)

and use the algorithm for the emptiness problem Py.

Decidability
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Intersection Problem
Definition (Intersection Problem for Regular Languages)
The intersection problem Pn for regular languages is:
Given: regular grammars G and G’
Question: Is L(G)NL(G") = 0?
German: Schnittproblem
33 /38
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Equivalence Problem

Definition (Equivalence Problem for Regular Languages)
The equivalence problem P_ for regular languages is:

Given: regular grammars G and G’

Question: Is L(G) = L(G')?

German: Aquivalenzproblem
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Decidability: Equivalence Problem

Theorem
The equivalence problem for regular languages is decidable.

Proof.
In general for languages L and L', we have

L=Liff (LnL)yu(LnLl)=0.

The regular languages are closed under intersection, union

and complement, and we know algorithms for these operations.

We can therefore construct a grammar for (LN L')u (LN L)
and use the algorithm for the emptiness problem Py.

Decidability

O
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B5.4 Summary

Summary
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Summary

» The regular languages are closed under all usual operations
(union, intersection, complement, concatenation, star).

» All usual decision problems (word problem, emptiness,
finiteness, intersection, equivalence) are decidable
for regular languages.

Summary
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