Theory of Computer Science B5. Regular Languages: Closure Properties and Decidability

Gabriele Röger

University of Basel

March 17, 2025

B5. Regular Languages: Closure Properties and Decidability

Introduction

1 / 38

B5.1 Introduction

Theory of Computer Science March 17, 2025 — B5. Regular Languages: Closure Properties and Decidability

B5.1 Introduction
B5.2 Closure Properties
B5.3 Decidability
B5.4 Summary

B5. Regular Languages: Closure Properties and Decidability

Further Analysis

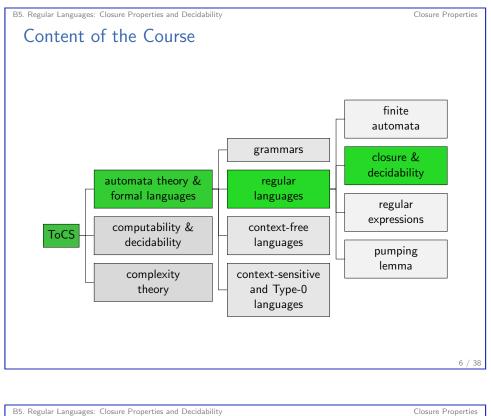
We can convert freely between regular grammars, DFAs and NFAs. So don't let's analyse them individually but instead focus on the corresponding class of regular languages:

- With what operations can we "combine" regular languages and the result is again a regular language? E.g. is the intersection of two regular languages regular?
- What general questions can we resolve algorithmically for any regular language?

Introduction

Closure Properties

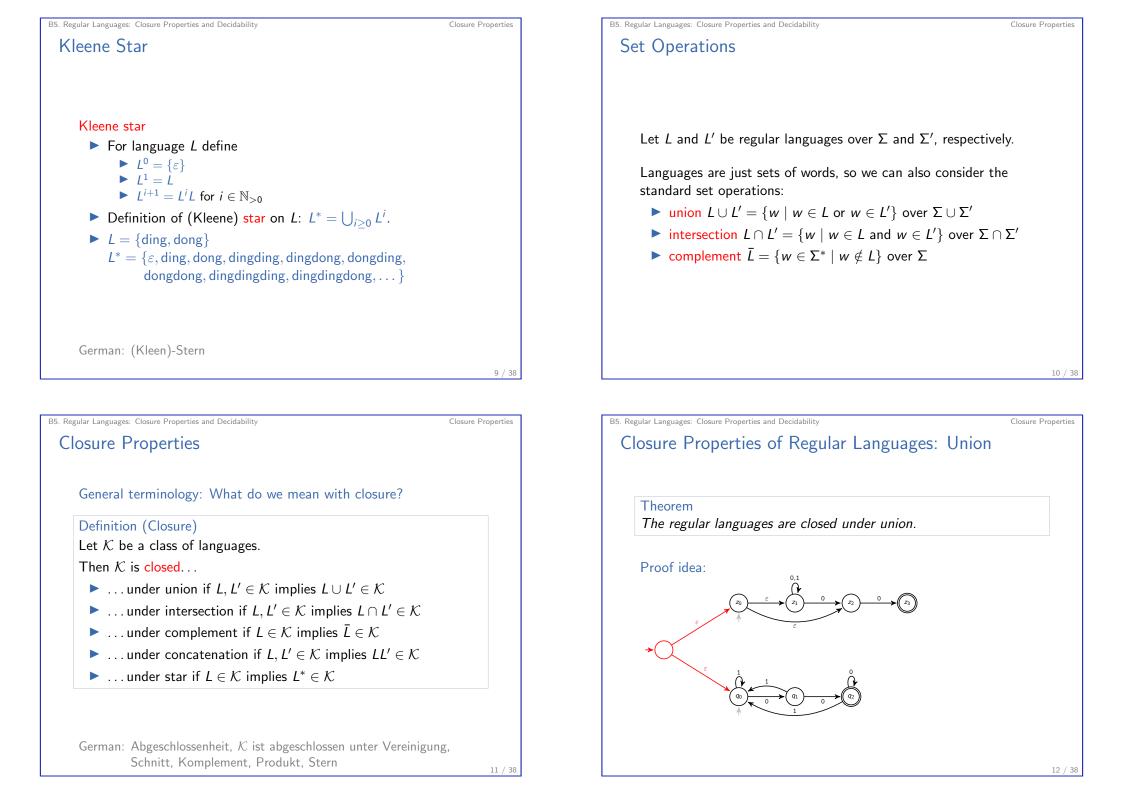
B5.2 Closure Properties



Concatenation of Languages Concatenation For two languages L_1 (over Σ_1) and L_2 (over Σ_2), the concatenation of L_1 and L_2 is the language $L_1L_2 = \{w_1w_2 \in (\Sigma_1 \cup \Sigma_2)^* \mid w_1 \in L_1, w_2 \in L_2\}.$ $L_1 = \{Pancake, Waffle\}$ $L_2 = \{with Lee Cream, with Mushrooms, with Cheese\}$ $L_1L_2 = \{Pancakewith Lee Cream, Pancakewith Mushrooms, Pancakewith Cheese, Wafflewith Lee Cream, Wafflewith Mushrooms, Wafflewith Cheese}$

German: Produkt

5 / 38

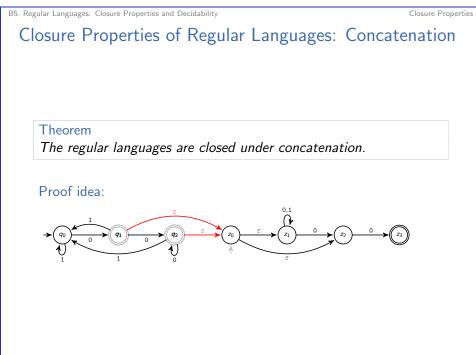


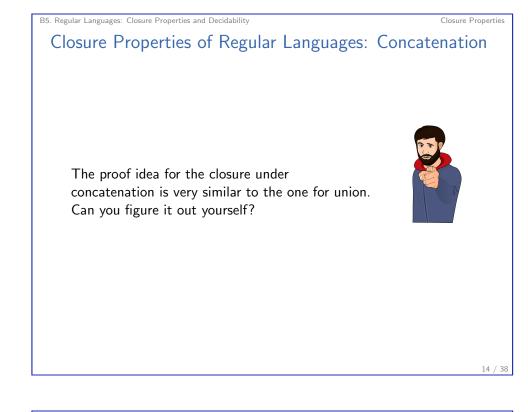
Closure Properties

Closure Properties of Regular Languages: Union

Proof.

Let L_1 , L_2 be regular languages. Let $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_1, F_1 \rangle$ and $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_2, F_2 \rangle$ be NFAs with $\mathcal{L}(M_1) = L_1$ and $\mathcal{L}(M_2) = L_2$. W.l.o.g. $Q_1 \cap Q_2 = \emptyset$. Then NFA $M = \langle Q, \Sigma_1 \cup \Sigma_2, \delta, q_0, F_1 \cup F_2 \rangle$ with $\blacktriangleright q_0 \notin Q_1 \cup Q_2$ and $\triangleright \quad Q = \{q_0\} \cup Q_1 \cup Q_2,$ • for all $q \in Q$, $a \in \Sigma_1 \cup \Sigma_2 \cup \{\varepsilon\}$ $\delta_1(q, a)$ if $q \in Q_1$ and $a \in \Sigma_1 \cup \{\varepsilon\}$ $\delta(q, a) = \begin{cases} \delta_2(q, a) & \text{if } q \in Q_2 \text{ and } a \in \Sigma_2 \cup \{\varepsilon\} \\ \{q_1, q_2\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\ \emptyset & \text{otherwise} \end{cases}$ recognizes $L_1 \cup L_2$.





B5. Regular Languages: Closure Properties and Decidability

Closure Properties

Closure Properties of Regular Languages: Concatenation

Proof.

Let L_1 , L_2 be regular languages. Let $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_1, F_1 \rangle$ and $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_2, F_2 \rangle$ be NFAs with $\mathcal{L}(M_1) = L_1$ and $\mathcal{L}(M_2) = L_2$. W.I.o.g. $Q_1 \cap Q_2 = \emptyset$. Then NFA $M = \langle Q_1 \cup Q_2, \Sigma_1 \cup \Sigma_2, \delta, q_1, F_2 \rangle$ with ▶ for all $q \in Q$, $a \in \Sigma_1 \cup \Sigma_2 \cup \{\varepsilon\}$ $\{\delta_1(q,a) \quad \text{if } q \in Q_1 \setminus F_1 \text{ and } a \in \Sigma_1 \cup \{\varepsilon\}\}$ $\delta(q, a) = \begin{cases} \delta_1(q, a) & \text{if } q \in F_1 \text{ and } a \in \Sigma_1 \\ \delta_1(q, a) \cup \{q_2\} & \text{if } q \in F_1 \text{ and } a = \varepsilon \end{cases}$ $\delta_2(q, a)$ if $q \in Q_2$ and $a \in \Sigma_2 \cup \{\varepsilon\}$ otherwise recognizes L_1L_2 .

13 / 38

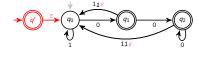
Closure Properties

Closure Properties of Regular Languages: Star

Theorem

The regular languages are closed under star.

Proof idea:



17 / 38

Closure Properties

B5. Regular Languages: Closure Properties and Decidability

Closure Properties of Regular Languages: Complement

Theorem

The regular languages are closed under complement.

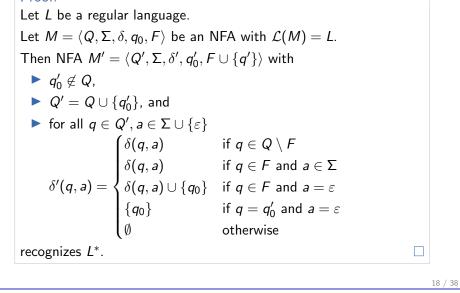
Proof.

Let L be a regular language.

Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA with $\mathcal{L}(M) = L$. Then $M' = \langle Q, \Sigma, \delta, q_0, Q \setminus F \rangle$ is a DFA with $\mathcal{L}(M') = \overline{L}$. B5. Regular Languages: Closure Properties and Decidability

Closure Properties of Regular Languages: Star

Proof.



B5. Regular Languages: Closure Properties and Decidability

Closure Properties

Closure Properties

Closure Properties of Regular Languages: Intersection

Theorem

The regular languages are closed under intersection.

Proof.

Let L_1 , L_2 be regular languages.

Let $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_{01}, F_1 \rangle$ and $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_{02}, F_2 \rangle$ be DFAs with $\mathcal{L}(M_1) = L_1$ and $\mathcal{L}(M_2) = L_2$.

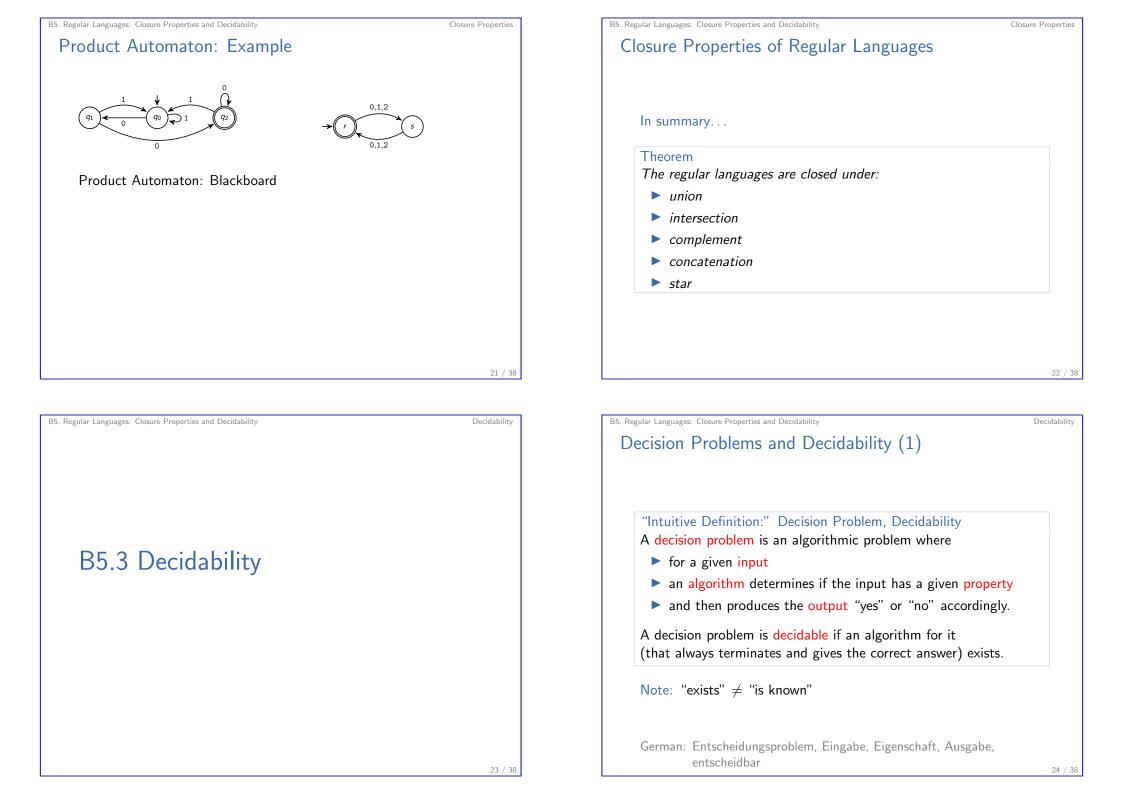
The product automaton

 $M = \langle Q_1 \times Q_2, \Sigma_1 \cap \Sigma_2, \delta, \langle q_{01}, q_{02} \rangle, F_1 \times F_2 \rangle$

with $\delta(\langle q_1, q_2 \rangle, a) = \langle \delta_1(q_1, a), \delta_2(q_2, a) \rangle$

accepts $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$.

German: Kreuzproduktautomat



Decision Problems and Decidability (2)

Notes:

- not a formal definition: we did not formally define "algorithm", "input", "output" etc. (which is not trivial)
- lack of a formal definition makes it difficult to prove that something is not decidable
- \rightsquigarrow studied thoroughly in the next part of the course

25 / 38

Decidability

B5. Regular Languages: Closure Properties and Decidability

Decidability

Word Problem

 $\label{eq:problem} \begin{array}{l} \mbox{Definition (Word Problem for Regular Languages)} \\ \mbox{The word problem } P_{\in} \mbox{ for regular languages is:} \end{array}$

 $\begin{array}{ll} \mbox{Given:} & \mbox{regular grammar } G \mbox{ with alphabet } \Sigma \\ & \mbox{ and word } w \in \Sigma^* \\ \mbox{Question:} & \mbox{Is } w \in \mathcal{L}(G)? \end{array}$

Decision Problems: Example

For now we describe decision problems in a semi-formal "given" / "question" way:

 $\begin{array}{l} \mbox{Example (Emptiness Problem for Regular Languages)} \\ \mbox{The emptiness problem P_{\emptyset} for regular languages} \\ \mbox{is the following problem:} \end{array}$

Given: regular grammar G Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

B5. Regular Languages: Closure Properties and Decidability Decidability: Word Problem Decidability

26 / 38

Theorem

The word problem for regular languages is decidable.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$. (The proofs in Chapter B4 describe a possible method.) Simulate M on input w. The simulation ends after |w| steps. The DFA M is in an accept state after this iff $w \in \mathcal{L}(G)$. Return "yes" or "no" accordingly.

Emptiness Problem

Definition (Emptiness Problem for Regular Languages) The emptiness problem P_{\emptyset} for regular languages is:

Given: regular grammar G Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

29 / 38

Decidability

B5. Regular Languages: Closure Properties and Decidability

Decidability

Finiteness Problem

Definition (Finiteness Problem for Regular Languages) The finiteness problem P_{∞} for regular languages is:

 $\begin{array}{ll} \mbox{Given:} & \mbox{regular grammar } G \\ \mbox{Question:} & \mbox{Is } |\mathcal{L}(G)| < \infty? \end{array}$

German: Endlichkeitsproblem

B5. Regular Languages: Closure Properties and Decidability

Decidability: Emptiness Problem

Theorem

The emptiness problem for regular languages is decidable.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$. We have $\mathcal{L}(G) = \emptyset$ iff in the transition diagram of M there is no path from the start state to any accept state. This can be checked with standard graph algorithms (e.g., breadth-first search).

B5. Regular Languages: Closure Properties and Decidability

Decidability

30 / 38

Decidability: Finiteness Problem

Theorem

The finiteness problem for regular languages is decidable.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

We have $|\mathcal{L}(G)| = \infty$ iff in the transition diagram of M there is a cycle that is reachable from the start state and from which an accept state can be reached.

This can be checked with standard graph algorithms.

Decidability

Intersection Problem

Definition (Intersection Problem for Regular Languages) The intersection problem P_{Ω} for regular languages is:

Given: regular grammars G and G' Question: Is $\mathcal{L}(G) \cap \mathcal{L}(G') = \emptyset$?

German: Schnittproblem

33 / 38

Decidability

B5. Regular Languages: Closure Properties and Decidability

Decidability

Equivalence Problem

Definition (Equivalence Problem for Regular Languages) The equivalence problem $P_{=}$ for regular languages is:

Given: regular grammars G and G' Question: Is $\mathcal{L}(G) = \mathcal{L}(G')$?

German: Äquivalenzproblem

B5. Regular Languages: Closure Properties and Decidability

Decidability: Intersection Problem

Theorem

The intersection problem for regular languages is decidable.

Proof.

Using the closure of regular languages under intersection, we can construct (e.g., by converting to DFAs, constructing the product automaton, then converting back to a grammar) a grammar G'' with $\mathcal{L}(G'') = \mathcal{L}(G) \cap \mathcal{L}(G')$ and use the algorithm for the emptiness problem P_{\emptyset} .

B5. Regular Languages: Closure Properties and Decidability

Decidability

34 / 38

Decidability

Decidability: Equivalence Problem

Theorem

The equivalence problem for regular languages is decidable.

Proof.

In general for languages L and L', we have

L = L' iff $(L \cap \overline{L}') \cup (\overline{L} \cap L') = \emptyset$.

The regular languages are closed under intersection, union and complement, and we know algorithms for these operations.

We can therefore construct a grammar for $(L \cap \overline{L}') \cup (\overline{L} \cap L')$ and use the algorithm for the emptiness problem P_{\emptyset} .

35 / 38

Summary

B5.4 Summary

Summary

- The regular languages are closed under all usual operations (union, intersection, complement, concatenation, star).
- All usual decision problems (word problem, emptiness, finiteness, intersection, equivalence) are decidable for regular languages.

37 / 38

38 / 38