

Gabriele Röger

computability &

decidability

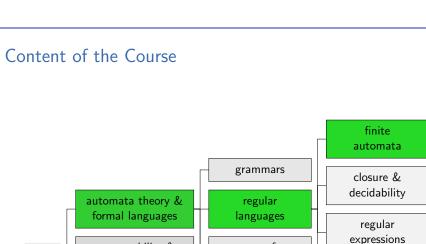
complexity

theory

ToCS -

University of Basel

March 5, 2025



context-free

languages

context-sensitive

and Type-0 languages Theory of Computer Science March 5, 2025 — B4. Finite Automata: Characterization

B4.1 Introduction

B4.2 DFAs vs. NFAs

B4.3 Finite Automata vs. Regular Languages

B4. Finite Automata: Characterization

B4.1 Introduction

pumping lemma 1 / 23

2 / 23

Introduction

Introduction

B4. Finite Automata: Characterization

B4.2 DFAs vs. NFAs

Finite Automata

Last chapter:

- ► Two kinds of finite automata: DFAs and NFAs.
- ▶ DFAs can be seen as a special case of NFAs.

Questions for today:

- Are there languages that can only be recognized by one kind of finite automaton (but not the other)?
- Can we characterize the languages that DFAs/NFAs can recognize, e.g. within the Chomsky hierarchy?

B4. Finite Automata: Characterization

DFAs vs. NFAs

5 / 23

DFAs are No More Powerful than NFAs

Observation

Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition $\delta(q, a) = q'$ with $\delta(q, a) = \{q'\}$.

6 / 23

DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can convert an NFA to an equivalent DFA. Let's first have a look at the idea by means of an example (on the blackboard).

9 / 23

DFAs vs. NFAs

B4. Finite Automata: Characterization DFAs vs. NFAs Conversion of an NFA to an Equivalent DFA: Example 0,1

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can convert an NFA to an equivalent DFA. Let's first have a look at the idea by means of an example (on the blackboard).

B4. Finite Automata: Characterization NFAs are No More Powerful than DFAs DFAs vs. NFAs

10 / 23

DFAs vs. NFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ we can construct a DFA $M' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$. Here M' is defined as follows:

- $\blacktriangleright Q' := \mathcal{P}(Q)$ (the power set of Q)
- $\blacktriangleright q_0' := E(q_0)$
- $\blacktriangleright F' := \{ \mathcal{Q} \subseteq \mathcal{Q} \mid \mathcal{Q} \cap F \neq \emptyset \}$
- ► For all $Q \in Q'$: $\delta'(Q, a) := \bigcup_{q \in Q} \bigcup_{q' \in \delta(q, a)} E(q')$

. . .

DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott) Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

B4. Finite Automata: Characterization

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$: $w \in \mathcal{L}(M)$ iff there is a sequence of states p_0, p_1, \dots, p_n with $p_0 \in E(q_0), p_n \in F$ and $p_i \in \bigcup_{q \in \delta(p_{i-1}, a_i)} E(q)$ for all $i \in \{1, \dots, n\}$ iff there is a sequence of subsets $\mathcal{Q}_0, \mathcal{Q}_1, \dots, \mathcal{Q}_n$ with $\mathcal{Q}_0 = q'_0, \mathcal{Q}_n \in F'$ and $\delta'(\mathcal{Q}_{i-1}, a_i) = \mathcal{Q}_i$ for all $i \in \{1, \dots, n\}$ iff $w \in \mathcal{L}(M')$

13 / 23

Finite Automata vs. Regular Languages

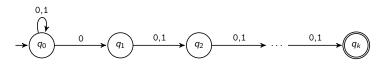
B4.3 Finite Automata vs. Regular Languages

B4. Finite Automata: Characterization

NFAs are More Compact than DFAs

Example

For $k \ge 1$ consider the language $L_k = \{w \in \{0, 1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$ The language L_k can be recognized by an NFA with k + 1 states:



There is no DFA with less than 2^k states that recognizes L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

14 / 23

DFAs vs. NFAs

B4. Finite Automata: Characterization

Finite Automata vs. Regular Languages

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof.

Let $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA. We define a regular grammar G with $\mathcal{L}(G) = \mathcal{L}(M)$.

Define $G = \langle Q, \Sigma, R, q_0 \rangle$ where R contains

- ▶ a rule $q \rightarrow aq'$ for every $\delta(q, a) = q'$, and
- ▶ a rule $q \rightarrow \varepsilon$ for every $q \in F$.

(We can eliminate forbidden epsilon rules as described in Ch. B2.)

15 / 23

. . .

B4. Finite Automata: Characterization

Finite Automata vs. Regular Languages

17 / 23

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$: $w \in \mathcal{L}(M)$ iff there is a sequence of states q'_0, q'_1, \dots, q'_n with

```
iff there is a sequence of states q_0, q_1, \ldots, q_n with

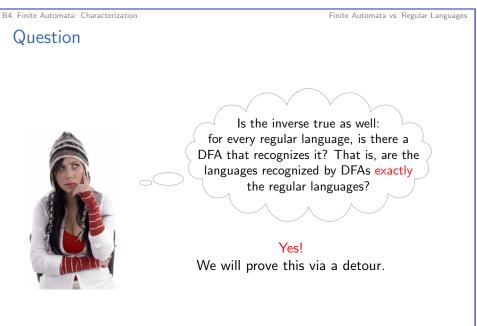
q'_0 = q_0, q'_n \in F and \delta(q'_{i-1}, a_i) = q'_i for all i \in \{1, \ldots, n\}

iff there is a sequence of variables q'_0, q'_1, \ldots, q'_n with

q'_0 is start variable and we have q'_0 \Rightarrow a_1q'_1 \Rightarrow a_1a_2q'_2 \Rightarrow

\dots \Rightarrow a_1a_2 \ldots a_nq'_n \Rightarrow a_1a_2 \ldots a_n.

iff w \in \mathcal{L}(G)
```

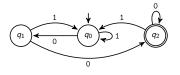


Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

B4. Finite Automata: Characterization

Exercise

Finite Automata vs. Regular Languages



Specify a regular grammar that generates the language recognized by this DFA.

Finite Automata vs. Regular Languages

18 / 23

Regular Grammars are No More Powerful than NFAs

Theorem

B4. Finite Automata: Characterization

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof.

Let $G = \langle V, \Sigma, R, S \rangle$ be a regular grammar. Define NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ with

$$Q = V \cup \{X\}, \quad X \notin V$$
$$q_0 = S$$
$$F = \begin{cases} \{S, X\} & \text{if } S \to \varepsilon \in R\\ \{X\} & \text{if } S \to \varepsilon \notin R \end{cases}$$
$$B \in \delta(A, a) \text{ if } A \to aB \in R$$
$$X \in \delta(A, a) \text{ if } A \to a \in R \end{cases}$$

19 / 23

20 / 23

B4. Finite Automata: Characterization

Finite Automata vs. Regular Languages

21 / 23

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof (continued).

For every
$$w = a_1 a_2 \dots a_n \in \Sigma^*$$
 with $n \ge 1$:

$$w \in \mathcal{L}(G)$$

iff there is a sequence on variables $A_1, A_2, \ldots, A_{n-1}$ with $S \Rightarrow a_1A_1 \Rightarrow a_1a_2A_2 \Rightarrow \cdots \Rightarrow a_1a_2 \ldots a_{n-1}A_{n-1} \Rightarrow a_1a_2 \ldots a_n$. iff there is a sequence of variables $A_1, A_2, \ldots, A_{n-1}$ with $A_1 \in \delta(S, a_1), A_2 \in \delta(A_1, a_2), \ldots, X \in \delta(A_{n-1}, a_n)$. iff $w \in \mathcal{L}(M)$. Case $w = \varepsilon$ is also covered because $S \in F$ iff $S \to \varepsilon \in R$.

