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B4. Finite Automata: Characterization Introduction

B4.1 Introduction
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B4. Finite Automata: Characterization Introduction

Finite Automata

Last chapter:

▶ Two kinds of finite automata: DFAs and NFAs.

▶ DFAs can be seen as a special case of NFAs.

Questions for today:

▶ Are there languages that can only be recognized by one kind
of finite automaton (but not the other)?

▶ Can we characterize the languages that DFAs/NFAs can
recognize, e.g. within the Chomsky hierarchy?
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B4. Finite Automata: Characterization DFAs vs. NFAs

B4.2 DFAs vs. NFAs
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B4. Finite Automata: Characterization DFAs vs. NFAs

DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
δ(q, a) = q′ with δ(q, a) = {q′}.
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B4. Finite Automata: Characterization DFAs vs. NFAs

Question

DFAs are
no more powerful than NFAs.

But are there languages
that can be recognized

by an NFA but not by a DFA?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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B4. Finite Automata: Characterization DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let’s first have a look at
the idea by means of an example (on the blackboard).
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B4. Finite Automata: Characterization DFAs vs. NFAs

Conversion of an NFA to an Equivalent DFA: Example

q0 q1 q2 q3
ε

ε

0

0,1

0
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B4. Finite Automata: Characterization DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof.

For every NFA M = ⟨Q,Σ, δ, q0,F ⟩ we can construct
a DFA M ′ = ⟨Q ′,Σ, δ′, q′0,F

′⟩ with L(M) = L(M ′).
Here M ′ is defined as follows:

▶ Q ′ := P(Q) (the power set of Q)

▶ q′0 := E (q0)

▶ F ′ := {Q ⊆ Q | Q ∩ F ̸= ∅}
▶ For all Q ∈ Q ′: δ′(Q, a) :=

⋃
q∈Q

⋃
q′∈δ(q,a) E (q

′)

. . .
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B4. Finite Automata: Characterization DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)
iff there is a sequence of states p0, p1, . . . , pn with
iff p0 ∈ E (q0), pn ∈ F and

pi ∈
⋃

q∈δ(pi−1,ai )
E (q) for all i ∈ {1, . . . , n}

iff there is a sequence of subsets Q0,Q1, . . . ,Qn with
iff Q0 = q′0, Qn ∈ F ′ and δ′(Qi−1, ai ) = Qi for all i ∈ {1, . . . , n}
iff w ∈ L(M ′)
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B4. Finite Automata: Characterization DFAs vs. NFAs

NFAs are More Compact than DFAs

Example

For k ≥ 1 consider the language
Lk = {w ∈ {0, 1}∗ | |w | ≥ k and the k-th last symbol of w is 0}.
The language Lk can be recognized by an NFA with k + 1 states:

q0 q1 q2 . . . qk
0

0,1

0,1 0,1 0,1

There is no DFA with less than 2k states that recognizes Lk
(without proof).

NFAs can often represent languages more compactly than DFAs.
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B4. Finite Automata: Characterization Finite Automata vs. Regular Languages

B4.3 Finite Automata vs. Regular
Languages
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B4. Finite Automata: Characterization Finite Automata vs. Regular Languages

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof.

Let M = ⟨Q,Σ, δ, q0,F ⟩ be a DFA.
We define a regular grammar G with L(G ) = L(M).

Define G = ⟨Q,Σ,R, q0⟩ where R contains

▶ a rule q → aq′ for every δ(q, a) = q′, and

▶ a rule q → ε for every q ∈ F .

(We can eliminate forbidden epsilon rules as described in Ch. B2.)
. . .
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B4. Finite Automata: Characterization Finite Automata vs. Regular Languages

Languages Recognized by DFAs are Regular

Theorem

Every language recognized by a DFA is regular (type 3).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗:

w ∈ L(M)

iff there is a sequence of states q′0, q
′
1, . . . , q

′
n with

iff q′0 = q0, q
′
n ∈ F and δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n}

iff there is a sequence of variables q′0, q
′
1, . . . , q

′
n with

iff q′0 is start variable and we have q′0 ⇒ a1q
′
1 ⇒ a1a2q

′
2 ⇒

iff · · · ⇒ a1a2 . . . anq
′
n ⇒ a1a2 . . . an.

iff w ∈ L(G )
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B4. Finite Automata: Characterization Finite Automata vs. Regular Languages

Exercise

q0q1 q2
0

1

0

1

0

1

Specify a regular grammar that generates the
language recognized by this DFA.
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B4. Finite Automata: Characterization Finite Automata vs. Regular Languages

Question

Is the inverse true as well:
for every regular language, is there a

DFA that recognizes it? That is, are the
languages recognized by DFAs exactly

the regular languages?

Yes!
We will prove this via a detour.

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof.

Let G = ⟨V ,Σ,R,S⟩ be a regular grammar.
Define NFA M = ⟨Q,Σ, δ, q0,F ⟩ with

Q = V ∪ {X}, X ̸∈ V

q0 = S

F =

{
{S ,X} if S → ε ∈ R

{X} if S → ε ̸∈ R

B ∈ δ(A, a) if A → aB ∈ R

X ∈ δ(A, a) if A → a ∈ R

. . .
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B4. Finite Automata: Characterization Finite Automata vs. Regular Languages

Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G ) = L(M).

Proof (continued).

For every w = a1a2 . . . an ∈ Σ∗ with n ≥ 1:

w ∈ L(G )

iff there is a sequence on variables A1,A2, . . . ,An−1 with
iff S ⇒ a1A1 ⇒ a1a2A2 ⇒ · · · ⇒ a1a2 . . . an−1An−1 ⇒ a1a2 . . . an.

iff there is a sequence of variables A1,A2, . . . ,An−1 with
iff A1 ∈ δ(S , a1),A2 ∈ δ(A1, a2), . . . ,X ∈ δ(An−1, an).

iff w ∈ L(M).

Case w = ε is also covered because S ∈ F iff S → ε ∈ R.
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Finite Automata and Regular Languages

DFA

regular grammar

NFA

In particular, this implies:

Corollary

L regular ⇐⇒ L is recognized by a DFA.
L regular ⇐⇒ L is recognized by an NFA.
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B4. Finite Automata: Characterization Summary

Summary

▶ DFAs and NFAs recognize the same languages.

▶ These are exactly the regular languages.
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