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B4. Finite Automata: Characterization Introduction

Finite Automata

Last chapter:
» Two kinds of finite automata: DFAs and NFAs.
» DFAs can be seen as a special case of NFAs.

Questions for today:
» Are there languages that can only be recognized by one kind
of finite automaton (but not the other)?

» Can we characterize the languages that DFAs/NFAs can
recognize, e.g. within the Chomsky hierarchy?

B4. Finite Automata: Characterization

B4.2 DFAs vs.

DFAs vs. NFAs

NFAs
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B4. Finite Automata: Characterization DFAs vs. NFAs

DFAs are No More Powerful than NFAs

Observation
Every language recognized by a DFA is also recognized by an NFA.

We can transform a DFA into an NFA by replacing every transition
5(q,a) = q’ with §(q,a) = {q'}.

B4. Finite Automata: Characterization

Question

DFAs vs. NFAs

DFAs are
no more powerful than NFAs.
But are there languages

that can be recognized
by an NFA but not by a DFA?
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B4. Finite Automata: Characterization

NFAs are No More Powerful than DFAs

DFAs vs. NFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

The proof of the theorem is constructive and shows how we can
convert an NFA to an equivalent DFA. Let's first have a look at
the idea by means of an example (on the blackboard).
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Conversion of an NFA to an Equivalent DFA: Example
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof.
For every NFA M = (Q, X, 0, qo, F) we can construct
a DFA M’ = (Q',%,8', g}, F') with L(M) = L(M").
Here M’ is defined as follows:

> Q' :=P(Q) (the power set of Q)

> g5 = E(qo)

> Fli={QCQ|ANF #0}

> Forall Q € Q" ¢"(Q,a) := Ugeo Uges(q,2 E(d)

DFAs vs. NFAs
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B4. Finite Automata: Characterization DFAs vs. NFAs

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language recognized by an NFA is also recognized by a DFA.

Proof (continued).

For every w = ajap...a, € L*:

w € L(M)

iff there is a sequence of states pg, p1, ..., pn With
po € E(qo), pn € F and
Pi € Uges(p_1,0) E(q) forall i € {1,....n}

iff there is a sequence of subsets Qq, 91, ..., D, with
QO = q(’), Q, € F" and 5’(@;_1,3;) =Q; forallie {1,. . .,n}
iff w e L(M') O
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B4. Finite Automata: Characterization DFAs vs. NFAs

NFAs are More Compact than DFAs

Example
For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Lx can be recognized by an NFA with k + 1 states:

0,1

There is no DFA with less than 2 states that recognizes Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.
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B4.3 Finite Automata vs. Regular
Languages
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B4. Finite Automata: Characterization

Languages Recognized by DFAs are Regular

Theorem
Every language recognized by a DFA is regular (type 3).

Proof.
Let M =(Q, X, 4, qo, F) be a DFA.
We define a regular grammar G with £(G) = L(M).
Define G = (Q, X, R, go) where R contains
> arule g — aq’ for every 6(q,a) = ¢’, and
> arule g — ¢ forevery g € F.

(We can eliminate forbidden epsilon rules as described in Ch. B2.)

Finite Automata vs. Regular Languages
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Languages Recognized by DFAs are Regular

Theorem
Every language recognized by a DFA is regular (type 3).

Proof (continued).
For every w = a1ax...a, € ™
w e L(M)
iff there is a sequence of states g, qi, .. ., g}, with
gb = qo. q, € F and 6(q}_;,a;) = ¢ forall i€ {1,...,n}
iff there is a sequence of variables qg, g1, ..., g}, with

qp is start variable and we have g = a1q] = a1a2q5 =
coe = 3132...anq, = 3132...an.

iff w € £(G)

O
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Exercise

Specify a regular grammar that generates the
language recognized by this DFA.
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Question

Is the inverse true as well:
for every regular language, is there a
DFA that recognizes it? That is, are the
languages recognized by DFAs exactly
the regular languages?

Yes!
We will prove this via a detour.
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Regular Grammars are No More Powerful than NFAs

Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof.
Let G = (V, X, R,S) be a regular grammar.
Define NFA M = (Q, £, 0, go, F) with

Q=VU{X}, XgV

G =35

{{S,X} ifS—sceR
(X} ifS—e¢R
Bed(Aa)ifA—aBeR
Xed(Aa)if A—-acR
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Regular Grammars are No More Powerful than NFAs Finite Automata and Regular Languages
Theorem
For every regular grammar G there is an NFA M
with L(G) = L(M). regular grammar
Proof (continued).
For every w = a1a>...a, € X* with n > 1:
we L(G
_ ( ) ) _ DFA NFA
iff there is a sequence on variables A, As, ..., Ap_1 with

S=aAi = a1aA = - = 313y ... ap_1An_1 = 3132 ... ap. In particular, this implies:
iff there is a sequence of variables A;, Ay, ..., A1 with Coroll
orollary
A1 €6(S,a1),Ar € 6(A1,a2),...,. X €5(A—_1,an). ] )
- 1 €0(5,a1) A2 € 0(A1, 22) - (An-1,20) L regular <= L is recognized by a DFA.
iff w € L(M). L regular <= L is recognized by an NFA.
Case w = ¢ is also covered because S € F iff S — ¢ € R. O
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B4. Finite Automata: Characterization Summary
Summary

> DFAs and NFAs recognize the same languages.
> These are exactly the regular languages.
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