Theory of Computer Science B3. Finite Automata

Gabriele Röger

University of Basel

March 3/5, 2025

Introduction

Content of the Course

Introduction 0000

Introduction

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

- simple access control
- card reader and push sensor
- card can either be valid or invalid

We will not consider automata that run forever but that process a finite input sequence and then classify it as accepted or not.

DFAs

When reading the input 01100 the automaton visits the states q_0 ,

When reading the input 01100 the automaton visits the states q_0 ,

When reading the input 01100 the automaton visits the states $q_0, q_1,$

When reading the input 01100 the automaton visits the states q_0 , q_1 ,

When reading the input 01100 the automaton visits the states $q_0, q_1, q_0,$

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 ,

When reading the input 01100 the automaton visits the states $q_0, q_1, q_0, q_0,$

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 , q_2 .

• states $Q = \{q_0, q_1, q_2\}$

- lacksquare states $Q=\{q_0,q_1,q_2\}$
- \blacksquare input alphabet $\Sigma = \{ \mathtt{0}, \mathtt{1} \}$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- lacktriangle transition function δ

$$\delta(q_0,0)=q_1$$

$$\delta(q_0,1)=q_0$$

$$\delta(q_1,0)=q_2$$

$$\delta(q_1,1)=q_0$$

$$\delta(q_2,0)=q_2$$

$$\delta(q_2,1)=q_0$$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- lacktriangle transition function δ

$$\delta(q_0, 0) = q_1$$
 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2$
 $\delta(q_2, 1) = q_0$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- lacktriangle transition function δ
- start state q_0

$$\delta(q_0, 0) = q_1$$
 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2$
 $\delta(q_2, 1) = q_0$

- \blacksquare states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- transition function δ
- start state q_0
- accept states $\{q_2\}$

$$\delta(q_0, 0) = q_1$$

 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2$

$$\delta(q_2,0) = q_2$$
$$\delta(q_2,1) = q_0$$

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple $M=\langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- lacksquare Σ is the input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- ullet $F \subseteq Q$ is the set of accept states (or final states)

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

Definition (Words Accepted by a DFA)

DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \ldots, n\}$ and
- $q'_n \in F.$

Example

Example

accepts: does not accept:

 $\begin{array}{ccc} 00 & & \varepsilon \\ 10010100 & & 1001010 \\ 01000 & & 010001 \end{array}$

Exercise (slido)

Consider the following DFA:

Which of the following words does it accept?

- abc
- ababcb
- babbc

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton. The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Example

Example

Example

The DFA recognizes the language $\{w \in \{0,1\}^* \mid w \text{ ends with } 00\}.$

A Note on Terminology

- In the literature, "accept" and "recognize" are sometimes used synonymously or the other way around. DFA recognizes a word or accepts a language.
- We try to stay consistent using the previous definitions (following the text book by Sipser).

Questions

Questions?

NFAs

pumping lemma

decidability

complexity

theory

DFA finite automata NFA grammars closure & decidability automata theory & regular formal languages languages regular expressions computability & context-free ToCS

languages

context-sensitive and Type-0

languages

NFAs

00000000000000

Nondeterministic Finite Automata

Why are DFAs called deterministic automata? What are nondeterministic automata, then?

In what Sense is a DFA Deterministic?

- A DFA has a single fixed state from which the computation starts.
- When a DFA is in a specific state and reads an input symbol, we know what the next state will be.
- For a given input, the entire computation is determined.
- This is a deterministic computation.

Nondeterministic Finite Automata: Example

differences to DFAs:

NFAs

000000000000000

differences to DFAs:

■ transition function δ can lead to zero or more successor states for the same $a \in \Sigma$

differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ϵ -transitions can be taken without "consuming" a symbol from the input

Nondeterministic Finite Automata: Example

differences to DFAs:

- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- ϵ -transitions can be taken without "consuming" a symbol from the input
- the automaton accepts a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- lacksquare Σ is the input alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $q_0 \in Q$ is the start state
- ullet $F \subseteq Q$ is the set of accept states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple

 $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

- Q is the finite set of states
- lacksquare Σ is the input alphabet
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

DFAs are (essentially) a special case of NFAs.

Accepting Computation: Example

→ computation tree on blackboard

ε -closure of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

ε -closure of a State

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with

- $q_0' = q,$
- $\mathbf{Q} \quad \mathbf{q}_i' \in \delta(\mathbf{q}_{i-1}', \varepsilon)$ for all $i \in \{1, \dots, n\}$ and
- **3** $q'_n = p$.

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with

- $q_i' \in \delta(q_{i-1}', \varepsilon)$ for all $i \in \{1, \ldots, n\}$ and
- **3** $q'_n = p$.

 $g \in E(q)$ for every state q

Exercise (slido)

Consider the following NFA:

Which states are in the ε -closure $E(q_0)$?

- **q**0
- q₁
- **q**2
- **q**₃

NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- $q_0' \in E(q_0),$
- $q_i' \in \bigcup_{q \in \delta(q_{i-1}', a_i)} E(q)$ for all $i \in \{1, \dots, n\}$ and
- $q_n' \in F.$

Example: Accepted Words

NFAs

0000000000000000

Exercise (slido)

Does this NFA accept input 01010?

NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ .

The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Example: Recognized Language

Example

The NFA recognizes the language

 $\{w \in \{0,1\}^* \mid w = 0 \text{ or } w \text{ ends with } 00\}.$

Questions

Questions?

Summary

Summary

- DFAs are automata where every state transition is uniquely determined.
- NFAs can have zero, one or more transitions for a given state and input symbol.
- NFAs can have ϵ -transitions that can be taken without reading a symbol from the input.
- NFAs accept a word if there is at least one accepting sequence of states.