

B3. Finite Automata

Finite Automaton: Example

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 , q_2 .

DFAs

9 / 32

DFAs

DFAs

A Note on Terminology

 In the literature, "accept" and "recognize" are sometimes used synonymously or the other way around.
 DFA recognizes a word or accepts a language. DFAs

17 / 32

We try to stay consistent using the previous definitions (following the text book by Sipser).

NFAs

In what Sense is a DFA Deterministic?

- A DFA has a single fixed state from which the computation starts.
- When a DFA is in a specific state and reads an input symbol, we know what the next state will be.
- ▶ For a given input, the entire computation is determined.
- ► This is a deterministic computation.

21 / 32

Nondeterministic Finite Automata: Example

differences to DFAs:

- ► transition function δ can lead to zero or more successor states for the same a ∈ Σ
- ε-transitions can be taken without "consuming" a symbol from the input
- the automaton accepts a word if there is at least one accepting sequence of states

22 / 32

NFAs

B3. Finite Automata

$\varepsilon\text{-closure of a State}$

For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure)

For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with

 $q'_0 = q,$ $q'_i \in \delta(q'_{i-1}, \varepsilon)$ for all $i \in \{1, \ldots, n\}$ and
 $q'_n = p.$

 $q \in E(q)$ for every state q

NFA: Accepted Words Definition (Words Accepted by an NFA) NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

$$\begin{array}{l} @ \quad q'_i \in \bigcup_{q \in \delta(q'_{i-1}, a_i)} E(q) \text{ for all } i \in \{1, \dots, n\} \text{ and} \\ @ \quad q'_n \in F. \end{array}$$

B3. Finite Automata

NFAs

25 / 32

NFAs

Exercise (slido)

NFAs

Exercise (slido)

NFAs

29 / 32

Does this NFA accept input 01010?

B3. Finite Automata

B3. Finite Automata

NFA: Recognized Language

Definition (Language Recognized by an NFA) Let M be an NFA with input alphabet Σ .

The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$

Summarv

30 / 32

NFAs

DFAs are automata where every state transition is uniquely determined. NFAs can have zero, one or more transitions for a given state and input symbol. NFAs can have ε-transitions that can be taken without reading a symbol from the input. NFAs accept a word if there is at least one accepting sequence of states.