
Theory of Computer Science
B3. Finite Automata

Gabriele Röger
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B3. Finite Automata Introduction

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

▶ simple access control

▶ card reader and push sensor

▶ card can either be valid or invalid

locked unlocked

push

validcard
push,

invalidcard
validcard,
invalidcard
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B3. Finite Automata Introduction

▶ Finite automata are a good model for computers
with very limited memory.
Where can the turnstile controller store information
about what it has seen in the past?

▶ We will not consider automata that run forever
but that process a finite input sequence and
then classify it as accepted or not.
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7 / 32

B3. Finite Automata DFAs

Content of the Course

ToCS

automata theory &
formal languages

grammars

regular
languages

finite
automata

DFA

NFA

closure &
decidability

regular
expressions

pumping
lemma

context-free
languages

context-sensitive
and Type-0
languages

computability &
decidability

complexity
theory

8 / 32



B3. Finite Automata DFAs

Finite Automaton: Example

q0q1 q2
0

1

0

1

0

1

When reading the input 01100 the automaton visits the states
q0, q1, q0, q0, q1, q2.
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B3. Finite Automata DFAs

Finite Automata: Terminology and Notation

q0q1 q2
0

1

0

1

0

1

▶ states Q = {q0, q1, q2}
▶ input alphabet Σ = {0, 1}
▶ transition function δ

▶ start state q0
▶ accept states {q2}

δ(q0, 0) = q1

δ(q0, 1) = q0

δ(q1, 0) = q2

δ(q1, 1) = q0

δ(q2, 0) = q2

δ(q2, 1) = q0

δ 0 1

q0 q1 q0
q1 q2 q0
q2 q2 q0

table form of δ
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B3. Finite Automata DFAs

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M = ⟨Q,Σ, δ, q0,F ⟩ where
▶ Q is the finite set of states

▶ Σ is the input alphabet

▶ δ : Q × Σ → Q is the transition function

▶ q0 ∈ Q is the start state

▶ F ⊆ Q is the set of accept states (or final states)
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B3. Finite Automata DFAs

DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in
an accept state.

Definition (Words Accepted by a DFA)

DFA M = ⟨Q,Σ, δ, q0,F ⟩ accepts the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 = q0,

2 δ(q′i−1, ai ) = q′i for all i ∈ {1, . . . , n} and

3 q′n ∈ F .
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B3. Finite Automata DFAs

Example

Example

q0q1 q2
0

1

0

1

0

1
accepts:
00

10010100

01000

does not accept:
ε
1001010

010001

13 / 32

B3. Finite Automata DFAs

Exercise (slido)

Consider the following DFA:

q0 q1 q2 q3

b,c

a

a

b

c a

b

c

a,b,c

Which of the following words does it accept?

▶ abc

▶ ababcb

▶ babbc
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B3. Finite Automata DFAs

DFA: Recognized Language

Definition (Language Recognized by a DFA)

Let M be a deterministic finite automaton.
The language recognized by M is defined as
L(M) = {w ∈ Σ∗ | w is accepted by M}.
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B3. Finite Automata DFAs

Example

Example

q0q1 q2
0

1

0

1

0

1
The DFA recognizes the language
{w ∈ {0, 1}∗ | w ends with 00}.
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B3. Finite Automata DFAs

A Note on Terminology

▶ In the literature, “accept” and “recognize” are sometimes
used synonymously or the other way around.
DFA recognizes a word or accepts a language.

▶ We try to stay consistent using the previous definitions
(following the text book by Sipser).
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B3. Finite Automata NFAs

B3.3 NFAs
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B3. Finite Automata NFAs

Nondeterministic Finite Automata

Why are DFAs called
deterministic automata? What are

nondeterministic automata,
then?

Picture courtesy of stockimages / FreeDigitalPhotos.net
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B3. Finite Automata NFAs

In what Sense is a DFA Deterministic?

▶ A DFA has a single fixed state
from which the computation starts.

▶ When a DFA is in a specific state and reads an input symbol,
we know what the next state will be.

▶ For a given input, the entire computation is determined.

▶ This is a deterministic computation.
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B3. Finite Automata NFAs

Nondeterministic Finite Automata: Example

q0 q1 q2 q3
ε

ε

0

0,1

0

differences to DFAs:

▶ transition function δ can lead to
zero or more successor states for the same a ∈ Σ

▶ ε-transitions can be taken without “consuming” a symbol
from the input

▶ the automaton accepts a word if there is
at least one accepting sequence of states
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B3. Finite Automata NFAs

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M = ⟨Q,Σ, δ, q0,F ⟩ where
▶ Q is the finite set of states

▶ Σ is the input alphabet

▶ δ : Q × (Σ ∪ {ε}) → P(Q) is the transition function
(mapping to the power set of Q)

▶ q0 ∈ Q is the start state

▶ F ⊆ Q is the set of accept states

DFAs are (essentially) a special case of NFAs.
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B3. Finite Automata NFAs

Accepting Computation: Example

q0 q1 q2 q3
ε

ε

0

0,1

0 w = 0100

⇝ computation tree on blackboard
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B3. Finite Automata NFAs

ε-closure of a State

For a state q ∈ Q, we write E (q) to denote the set of states that
are reachable from q via ε-transitions in δ.

Definition (ε-closure)

For NFA M = ⟨Q,Σ, δ, q0,F ⟩ and state q ∈ Q, state p is in the
ε-closure E (q) of q iff there is a sequence of states q′0, . . . , q

′
n with

1 q′0 = q,

2 q′i ∈ δ(q′i−1, ε) for all i ∈ {1, . . . , n} and

3 q′n = p.

q ∈ E (q) for every state q
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B3. Finite Automata NFAs

Exercise (slido)

Consider the following NFA:

q0 q1 q2 q3
ε

ε

0

0,1

0, ε

Which states are in the ε-closure E (q0)?

▶ q0
▶ q1
▶ q2
▶ q3
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B3. Finite Automata NFAs

NFA: Accepted Words

Definition (Words Accepted by an NFA)

NFA M = ⟨Q,Σ, δ, q0,F ⟩ accepts the word w = a1 . . . an
if there is a sequence of states q′0, . . . , q

′
n ∈ Q with

1 q′0 ∈ E (q0),

2 q′i ∈
⋃

q∈δ(q′i−1,ai )
E (q) for all i ∈ {1, . . . , n} and

3 q′n ∈ F .
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B3. Finite Automata NFAs

Example: Accepted Words

Example

q0 q1 q2 q3
ε

ε

0

0,1

0

accepts:
0

10010100

01000

does not accept:
ε
1001010

010001
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B3. Finite Automata NFAs

Exercise (slido)

q0 q1 q2 q3
ε

ε

0

0,1

0

Does this NFA accept input 01010?
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B3. Finite Automata NFAs

NFA: Recognized Language

Definition (Language Recognized by an NFA)

Let M be an NFA with input alphabet Σ.

The language recognized by M is defined as
L(M) = {w ∈ Σ∗ | w is accepted by M}.
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B3. Finite Automata NFAs

Example: Recognized Language

Example

q0 q1 q2 q3
ε

ε

0

0,1

0

The NFA recognizes the language
{w ∈ {0, 1}∗ | w = 0 or w ends with 00}.
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B3. Finite Automata Summary

Summary

▶ DFAs are automata where every state transition
is uniquely determined.

▶ NFAs can have zero, one or more transitions
for a given state and input symbol.

▶ NFAs can have ϵ-transitions that can be taken without
reading a symbol from the input.

▶ NFAs accept a word if there is at least one
accepting sequence of states.
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