Theory of Computer Science B3. Finite Automata

Gabriele Röger

University of Basel

March 3/5, 2025

Theory of Computer Science March 3/5, 2025 — B3. Finite Automata

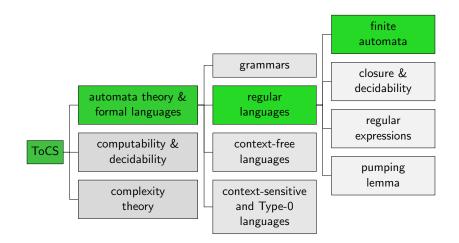
B3.1 Introduction

B3.2 DFAs

B3.3 NFAs

B3.1 Introduction

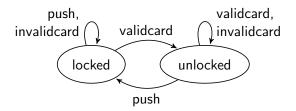
Content of the Course



A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

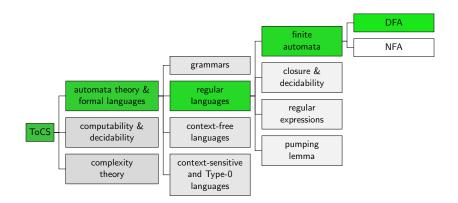
- simple access control
- card reader and push sensor
- card can either be valid or invalid

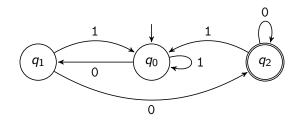


- Finite automata are a good model for computers with very limited memory.
 Where can the turnstile controller store information about what it has seen in the past?
- We will not consider automata that run forever but that process a finite input sequence and then classify it as accepted or not.

B3.2 DFAs

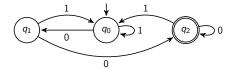
Content of the Course





When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 , q_2 .

Finite Automata: Terminology and Notation



• states
$$Q = \{q_0, q_1, q_2\}$$

- input alphabet $\Sigma = \{0, 1\}$
- \blacktriangleright transition function δ
- ▶ start state *q*₀
- ▶ accept states {q₂}

$$\delta(q_0, 0) = q_1$$

 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2$
 $\delta(q_2, 1) = q_0$

Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata) A deterministic finite automaton (DFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where $\blacksquare Q$ is the finite set of states $\blacksquare \Sigma$ is the input alphabet $\blacksquare \delta : Q \times \Sigma \rightarrow Q$ is the transition function $\blacksquare q_0 \in Q$ is the start state

• $F \subseteq Q$ is the set of accept states (or final states)

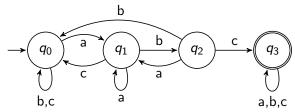
DFA: Accepted Words

Intuitively, a DFA accepts a word if its computation terminates in an accept state.

Definition (Words Accepted by a DFA) DFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with $q'_0 = q_0$, $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, \dots, n\}$ and $q'_n \in F$.

Exercise (slido)

Consider the following DFA:



Which of the following words does it accept?

- abc
- ababcb
- babbc

DFA: Recognized Language

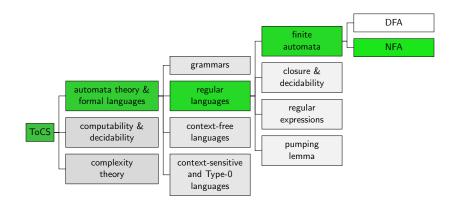
Definition (Language Recognized by a DFA) Let M be a deterministic finite automaton. The language recognized by M is defined as $\mathcal{L}(M) = \{w \in \Sigma^* \mid w \text{ is accepted by } M\}.$

A Note on Terminology

- In the literature, "accept" and "recognize" are sometimes used synonymously or the other way around.
 DFA recognizes a word or accepts a language.
- We try to stay consistent using the previous definitions (following the text book by Sipser).

B3.3 NFAs

Content of the Course



Nondeterministic Finite Automata

Why are DFAs called deterministic automata? What are nondeterministic automata, then?

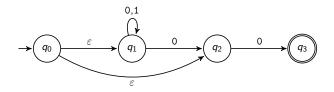
Picture courtesy of stockimages / FreeDigitalPhotos.net

NFAs

In what Sense is a DFA Deterministic?

- A DFA has a single fixed state from which the computation starts.
- When a DFA is in a specific state and reads an input symbol, we know what the next state will be.
- For a given input, the entire computation is determined.
- ► This is a deterministic computation.

Nondeterministic Finite Automata: Example



differences to DFAs:

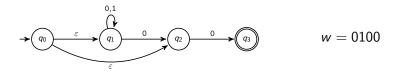
- Itransition function δ can lead to zero or more successor states for the same a ∈ Σ
- ε-transitions can be taken without "consuming" a symbol from the input
- the automaton accepts a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition



DFAs are (essentially) a special case of NFAs.

Accepting Computation: Example



 \rightsquigarrow computation tree on blackboard

ε -closure of a State

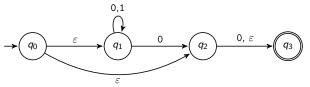
For a state $q \in Q$, we write E(q) to denote the set of states that are reachable from q via ε -transitions in δ .

Definition (ε -closure) For NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ and state $q \in Q$, state p is in the ε -closure E(q) of q iff there is a sequence of states q'_0, \ldots, q'_n with $q'_0 = q$, $q'_i \in \delta(q'_{i-1}, \varepsilon)$ for all $i \in \{1, \ldots, n\}$ and $q'_n = p$.

 $q \in E(q)$ for every state q

Exercise (slido)

Consider the following NFA:



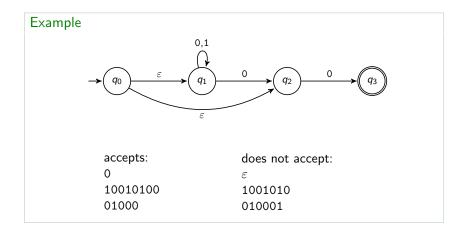
Which states are in the ε -closure $E(q_0)$?

► q₃

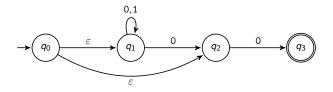
NFA: Accepted Words

Definition (Words Accepted by an NFA) NFA $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ accepts the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with a $q'_0 \in E(q_0)$, $q'_i \in \bigcup_{q \in \delta(q'_{i-1}, a_i)} E(q)$ for all $i \in \{1, \dots, n\}$ and $q'_n \in F$.

Example: Accepted Words



Exercise (slido)

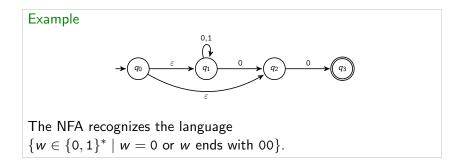


Does this NFA accept input 01010?

NFA: Recognized Language

Definition (Language Recognized by an NFA) Let M be an NFA with input alphabet Σ .

The language recognized by M is defined as $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is accepted by } M \}.$



Summary

- DFAs are automata where every state transition is uniquely determined.
- NFAs can have zero, one or more transitions for a given state and input symbol.
- NFAs can have ε-transitions that can be taken without reading a symbol from the input.
- NFAs accept a word if there is at least one accepting sequence of states.