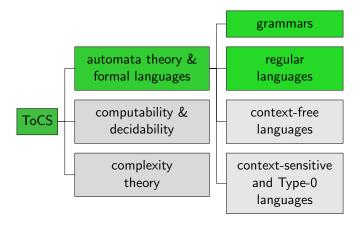
Theory of Computer Science B2. Regular Grammars: ε -Rules

Gabriele Röger

University of Basel

March 3, 2025

Content of the Course



Recap

Recap: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle V, \Sigma, R, S \rangle$ with

- V finite set of variables (nonterminal symbols)
- lue Σ finite alphabet of terminal symbols with $V \cap \Sigma = \emptyset$
- $R \subseteq (V \times (\Sigma \cup \Sigma V)) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules
- if $S \to \varepsilon \in R$, there is no $X \in V$, $y \in \Sigma$ with $X \to yS \in R$
- $S \in V$ start variable.

Recap: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle V, \Sigma, R, S \rangle$ with

- V finite set of variables (nonterminal symbols)
- lacksquare Σ finite alphabet of terminal symbols with $V\cap\Sigma=\emptyset$
- $R \subseteq (V \times (\Sigma \cup \Sigma V)) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules
- if $S \to \varepsilon \in R$, there is no $X \in V$, $y \in \Sigma$ with $X \to yS \in R$
- $S \in V$ start variable.

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs in the right-hand side of a rule.

Question (Slido)

With a regular grammar, how many steps does it take to derive a non-empty word (over Σ) from the start variable?

Recap

A language is regular if it is generated by some regular grammar.

Definition (Regular Language)

A language $L \subseteq \Sigma^*$ is regular

if there exists a regular grammar G with $\mathcal{L}(G) = L$.

Epsilon Rules

Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle V, \Sigma, R, S \rangle$ with

- V finite set of variables (nonterminal symbols)
- lacksquare Σ finite alphabet of terminal symbols with $V \cap \Sigma = \emptyset$
- $R \subseteq (V \times (\Sigma \cup \Sigma V)) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules
- if $S \to \varepsilon \in R$, there is no $X \in V, y \in \Sigma$ with $X \to yS \in R$
- $S \in V$ start variable.

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs in the right-hand side of a rule.

How restrictive is this? If we don't restrict the usage of ε as right-hand side of a rule, what does this change?

Our Plan

We are going to show that every grammar with rules

$$R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$$

generates a regular language.

Question

This is much simpler! Why don't we define regular languages via such grammars?

Question

Both variants (restricting the occurrence of ε on the right-hand side of rules or not) characterize exactly the regular languages.

In the following situations, which variant would you prefer?

- You want to prove something for all regular languages.
- You want to specify a grammar to establish that a certain language is regular.
- You want to write an algorithm that takes a grammar for a regular language as input.

Our Plan

We are going to show that every grammar with rules

$$R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$$

generates a regular language.

- The proof will be constructive, i. e. it will tell us how to construct a regular grammar for a language that is given by such a more general grammar.
- Two steps:
 - Eliminate the start variable from the right-hand side of rules.
 - 2 Eliminate forbidden occurrences of ε .

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

$\mathsf{Theorem}$

For every grammar $G = \langle V, \Sigma, R, S \rangle$ there is a grammar $G' = \langle V', \Sigma, R', S \rangle$ with rules $R' \subseteq (V' \cup \Sigma)^* V'(V' \cup \Sigma)^* \times (V' \setminus \{S\} \cup \Sigma)^*$ such that $\mathcal{L}(G) = \mathcal{L}(G')$.

Note: this theorem is true for all grammars.

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let's illustrate its idea.

Consider $G = \langle \{S, X\}, \{a, b\}, R, S \rangle$ with the following rules in R:

$$\mathtt{bS} o arepsilon$$

$$\mathsf{S} \to \mathsf{XabS}$$

$$\mathtt{bX} \to \mathtt{aSa}$$

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let's illustrate its idea.

Consider $G = \langle \{S, X\}, \{a, b\}, R, S \rangle$ with the following rules in R:

$$\mathrm{bS} \to \varepsilon$$

$$\mathsf{S}\to\mathsf{XabS}$$

$$\mathtt{bX} \to \mathtt{aSa}$$

$$\mathsf{X} \to \mathtt{abc}$$

The new grammar has all original rules except that S is replaced with a new variable S' (allowing to derive everything from S' that could originally be derived from the start variable S):

$$\mathrm{bS'} \to \varepsilon$$

$$S' \to XabS'$$

$$\mathsf{X} \to \mathtt{abc}$$

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let's illustrate its idea.

Consider $G = \langle \{S, X\}, \{a, b\}, R, S \rangle$ with the following rules in R:

$$\mathrm{bS} \to \varepsilon$$

$$\mathsf{S} o \mathsf{XabS}$$

$$X \to \mathtt{abc}$$

The new grammar has all original rules except that S is replaced with a new variable S' (allowing to derive everything from S' that could originally be derived from the start variable S):

$$\mathrm{bS'} \to \varepsilon$$

$$\mathsf{S'} o \mathsf{XabS'}$$

$$X\to \mathtt{abc}$$

In addition, it has rules that allow to start from the original start variable but switch to S' after the first rule application:

$$S \rightarrow XabS'$$

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let $G = \langle V, \Sigma, R, S \rangle$ be a grammar and $S' \notin V$ be a new variable. Construct rule set R' from R as follows:

- for every rule $r \in R$, add a rule r' to R', where r' is the result of replacing all occurences of S in r with S'.
- for every rule $S \to w \in R$, add a rule $S \to w'$ to R', where w' is the result of replacing all occurences of S in w with S'.

Then
$$\mathcal{L}(G) = \mathcal{L}(\langle V \cup \{S'\}, \Sigma, R', S \rangle).$$

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let $G = \langle V, \Sigma, R, S \rangle$ be a grammar and $S' \notin V$ be a new variable. Construct rule set R' from R as follows:

- for every rule $r \in R$, add a rule r' to R', where r' is the result of replacing all occurences of S in r with S'.
- for every rule $S \to w \in R$, add a rule $S \to w'$ to R', where w' is the result of replacing all occurences of S in w with S'.

Then
$$\mathcal{L}(G) = \mathcal{L}(\langle V \cup \{S'\}, \Sigma, R', S \rangle)$$
.

Note that the rules in R' are not fundamentally different from the rules in R. In particular:

- If $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ then $R' \subseteq V' \times (\Sigma \cup \Sigma V' \cup \{\varepsilon\})$.
- If $R \subseteq V \times (V \cup \Sigma)^*$ then $R' \subseteq V' \times (V' \cup \Sigma)^*$.

Epsilon Rules

Theorem

For every grammar G with rules $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Let's again first illustrate the idea. Consider

$$G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$$
 with the following rules in R :

 $\mathsf{S} o arepsilon \qquad \mathsf{S} o \mathsf{a} \mathsf{X} \qquad \mathsf{X} o \mathsf{a} \mathsf{X} \qquad \mathsf{X} o \mathsf{a} \mathsf{Y} \qquad \mathsf{Y} o \mathsf{b} \mathsf{Y} \qquad \mathsf{Y} o arepsilon$

Let's again first illustrate the idea. Consider

$$G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$$
 with the following rules in R :

$$\mathsf{S} \to \varepsilon \qquad \mathsf{S} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{Y} \qquad \mathsf{Y} \to \mathsf{b} \mathsf{Y} \qquad \mathsf{Y} \to \varepsilon$$

The start variable does not occur on a right-hand side. √

Let's again first illustrate the idea. Consider

$$G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$$
 with the following rules in R :

$$\mathsf{S} \to \varepsilon \qquad \mathsf{S} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{Y} \qquad \mathsf{Y} \to \mathsf{b} \mathsf{Y} \qquad \mathsf{Y} \to \varepsilon$$

- ① The start variable does not occur on a right-hand side. ✓
- ② Determine the set of variables that can be replaced with the empty word: $V_{\varepsilon} = \{S, Y\}$.

Let's again first illustrate the idea. Consider

$$G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$$
 with the following rules in R :

$$\mathsf{S} \to \varepsilon \qquad \mathsf{S} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{Y} \qquad \mathsf{Y} \to \mathsf{b} \mathsf{Y} \qquad \mathsf{Y} \to \varepsilon$$

- The start variable does not occur on a right-hand side.
- ② Determine the set of variables that can be replaced with the empty word: $V_{\varepsilon} = \{S, Y\}$.
- 3 Eliminate forbidden rules: \\/////\\\\\\

Let's again first illustrate the idea. Consider

$$G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$$
 with the following rules in R :

$$\mathsf{S} \to \varepsilon \qquad \mathsf{S} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{Y} \qquad \mathsf{Y} \to \mathsf{b} \mathsf{Y} \qquad \mathsf{Y} \to \varepsilon$$

- The start variable does not occur on a right-hand side.
- ② Determine the set of variables that can be replaced with the empty word: $V_{\varepsilon} = \{S, Y\}$.
- 3 Eliminate forbidden rules: \\/////\\\\\\
- If a variable from V_{ε} occurs in the right-hand side, add another rule that directly emulates a subsequent replacement with the empty word: $X \to a$ and $Y \to b$

Epsilon Rules

Theorem

For every grammar G with rules $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle V, \Sigma, R, S \rangle$ be a grammar s.t. $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$. Use the previous proof to construct grammar $G' = \langle V', \Sigma, R', S \rangle$ s.t. $R' \subseteq V' \times (\Sigma \cup \Sigma(V' \setminus \{S\}) \cup \{\varepsilon\})$ and $\mathcal{L}(G') = \mathcal{L}(G)$. Let $V_{\varepsilon} = \{A \mid A \to \varepsilon \in R'\}$.

Let R'' be the rule set that is created from R' by removing all rules of the form $A \to \varepsilon$ ($A \ne S$). Additionally, for every rule of the form $B \to xA$ with $A \in V_{\varepsilon}, B \in V', x \in \Sigma$ we add a rule $B \to x$ to R''.

Then $G'' = \langle V', \Sigma, R'', S \rangle$ is regular and $\mathcal{L}(G) = \mathcal{L}(G'')$.

Questions

Questions?

Exercise (Slido)

Consider $G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$ with the following rules in R:

$$S \rightarrow \varepsilon$$
 $S \rightarrow aX$
 $X \rightarrow aX$ $X \rightarrow aY$
 $Y \rightarrow bY$ $Y \rightarrow \varepsilon$

- \blacksquare Is G a regular grammar?
- Is $\mathcal{L}(G)$ regular?

Summary

Summary

- **Regular grammars restrict** the usage of ε in rules.
- This restriction is not necessary for the characterization of regular languages but convenient if we want to prove something for all regular languages.