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Recap: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, %, R, S) with
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VNX¥ =0
B RC(VX(ZUXV))U{(S,¢e)} finite set of rules
mifS—>e€R, thereisno X e V,yecXwithX —>ySeR
m S € V start variable. )
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Recap: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, %, R, S) with
m V finite set of variables (nonterminal symbols)
m Y finite alphabet of terminal symbols with VNX¥ =0
B RC(VX(ZUZV))U{(S,e)} finite set of rules
mifS—c€R, thereisno X € V,ye¥ with X —ySeR
m S € V start variable. )

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
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Question (Slido)

With a regular grammar, how many steps does it
take to derive a non-empty word (over X) from
the start variable?




Recap: Regular Languages

A language is regular if it is generated by some regular grammar.

Definition (Regular Language)

A language L C X* is regular
if there exists a regular grammar G with £(G) = L.
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Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, %, R, S) with

V finite set of variables (nonterminal symbols)

m Y finite alphabet of terminal symbols with VNX¥ =0

B RC(VX(ZUZV))U{(S,e)} finite set of rules
mifS—c€R, thereisno X € V,ye¥ with X —ySeR
m S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.

How restrictive is this? If we don't restrict the usage of ¢ as
right-hand side of a rule, what does this change?
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Our Plan

We are going to show that every grammar with rules
RCVx((XuzxzVUu{e})

generates a regular language.
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This is much simpler!
Why don’t we define
regular languages
via such grammars?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Question
%
. - &
Both variants (restricting the occurrence of ¢ on @%

the right-hand side of rules or not) characterize
exactly the regular languages.

In the following situations, which variant would you prefer?
m You want to prove something for all regular languages.

m You want to specify a grammar to establish
that a certain language is regular.

m You want to write an algorithm that takes a grammar
for a regular language as input.
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Our Plan
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We are going to show that every grammar with rules
RCVx(XUuzVU{e})

generates a regular language.

m The proof will be constructive, i.e. it will tell us how to
construct a regular grammar for a language
that is given by such a more general grammar.

m Two steps:

@ Eliminate the start variable from the right-hand side of rules.
@ Eliminate forbidden occurrences of ¢.
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Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

For every grammar G = (V, X, R, S) there is a grammar
G'=(V',L,R',S) with rules

R C(VUXD)*V(VUD)* x (V'\{S}UX)* such that
L(G) = L(G).

Note: this theorem is true for all grammars.
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Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc
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Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS — ¢ S’ — Xab§’ bX — aS’a X — abc
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Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS — ¢ S’ — Xab§’ bX — aS’a X — abc

In addition, it has rules that allow to start from the original start
variable but switch to S’ after the first rule application:

S — Xab§'
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Start Variable in Right-Hand Side of Rules: Proof

Let G =(V,XL,R,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set R’ from R as follows:

m for every rule r € R, add a rule r’ to R’, where r’ is the result
of replacing all occurences of S in r with S’

m foreveryrule S — w € R, add arule S — w’ to R/, where w/
is the result of replacing all occurences of S in w with S’

Then £(G) = L((VU{S'}, %, R',S)). O

v
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Start Variable in Right-Hand Side of Rules: Proof

Let G =(V,XL,R,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set R’ from R as follows:

m for every rule r € R, add a rule r’ to R’, where r’ is the result
of replacing all occurences of S in r with S’

m forevery rule S — w € R, add arule S — w’ to R, where w’
is the result of replacing all occurences of S in w with S’

Then £(G) = L((VU{S'}, %, R',S)). O

v

Note that the rules in R’ are not fundamentally different from the
rules in R. In particular:

mfRCV x(SUZVU{e}) then R C V' x (ZUTV' U {e}).
m fRCV x(VUE)* then R"C V' x (V' UX)*.
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Epsilon Rules

For every grammar G with rules R C V x (XUXV U {e})
there is a regular grammar G' with L(G) = L(G').
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Epsilon Rules: Example

Let's again first illustrate the idea.Consider
G = {{S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢
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Epsilon Rules: Example

Let's again first illustrate the idea.Consider
G = {{S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/
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Epsilon Rules: Example

Let's again first illustrate the idea.Consider
G = {{S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.
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Epsilon Rules: Example

Let's again first illustrate the idea.Consider
G = {{S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.

© Eliminate forbidden rules: Y//4/¢
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Epsilon Rules: Example

Let's again first illustrate the idea.Consider
G = {{S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S — aX X = aX X = a¥Y Y = bY Y = ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.

© Eliminate forbidden rules: Y//4#/¢

@ If a variable from V. occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X - aand Y — b
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Epsilon Rules

For every grammar G with rules R C V x (XUXV U {e})
there is a regular grammar G' with L(G) = L(G').

.

Let G=(V,X,R,S) be a grammars.t. RC V x (X UXV U{e}).
Use the previous proof to construct grammar G' = (V/, X R’ S)
st. R CV x (ZUX(V'\{S}Hu{e}) and L(G') = E(G)

Let V. ={A|A—c€ R}

Let R” be the rule set that is created from R’ by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B—+xAwithAec V., Be V' xe X weaddarule B— xtoR".

Then G = (V/,%, R",S) is regular and £(G) = £(G"). [

.
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Exercise (Slido)

Consider G = ({S,X,Y},{a,b}, R,S) with the
following rules in R:

S—e¢ S — aX
X — aX X — aY¥Y
Y — bY Y —>e¢

m Is G a regular grammar?
m Is £(G) regular?
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Summary

m Regular grammars restrict the usage of ¢ in rules.

m This restriction is not necessary for the characterization of
regular languages but convenient if we want to prove
something for all regular languages.
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