Theory of Computer Science B2. Regular Grammars: ε-Rules

Gabriele Röger

University of Basel

March 3, 2025

Theory of Computer Science March 3, 2025 — B2. Regular Grammars: ε-Rules

B2.1 Recap

B2.2 Epsilon Rules

Content of the Course

B2.1 Recap

Recap: Regular Grammars

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs in the right-hand side of a rule.

How restrictive is this? If we don't restrict the usage of ε as right-hand side of a rule, what does this change?

B2. Regular Grammars: ε-Rules

Recap

Question (Slido)

With a regular grammar, how many steps does it take to derive a non-empty word (over Σ) from the start variable?

Recap: Regular Languages

A language is regular if it is generated by some regular grammar.

Definition (Regular Language) A language $L \subseteq \Sigma^*$ is regular if there exists a regular grammar G with $\mathcal{L}(G) = L$.

B2.2 Epsilon Rules

Recap: Regular Grammars

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs in the right-hand side of a rule.

How restrictive is this? If we don't restrict the usage of ε as right-hand side of a rule, what does this change?

Recap: Regular Grammars

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs in the right-hand side of a rule.

How restrictive is this? If we don't restrict the usage of ε as right-hand side of a rule, what does this change?

Our Plan

We are going to show that every grammar with rules

$$R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$$

generates a regular language.

Question

This is much simpler! Why don't we define regular languages via such grammars?

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net

Epsilon Rules

Question

Both variants (restricting the occurrence of ε on the right-hand side of rules or not) characterize exactly the regular languages.

In the following situations, which variant would you prefer?

- You want to prove something for all regular languages.
- You want to specify a grammar to establish that a certain language is regular.
- You want to write an algorithm that takes a grammar for a regular language as input.

Our Plan

We are going to show that every grammar with rules

 $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$

generates a regular language.

- The proof will be constructive, i. e. it will tell us how to construct a regular grammar for a language that is given by such a more general grammar.
- Two steps:
 - Eliminate the start variable from the right-hand side of rules.
 - 2 Eliminate forbidden occurrences of ε .

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start variable does not occur on the right-hand side of any rule.

Theorem For every grammar $G = \langle V, \Sigma, R, S \rangle$ there is a grammar $G' = \langle V', \Sigma, R', S \rangle$ with rules $R' \subseteq (V' \cup \Sigma)^* V' (V' \cup \Sigma)^* \times (V' \setminus \{S\} \cup \Sigma)^*$ such that $\mathcal{L}(G) = \mathcal{L}(G')$.

Note: this theorem is true for all grammars.

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let's illustrate its idea. Consider $G = \langle \{S, X\}, \{a, b\}, R, S \rangle$ with the following rules in R:

 $bS
ightarrow arepsilon \qquad S
ightarrow XabS \qquad bX
ightarrow aSa \qquad X
ightarrow abc$

The new grammar has all original rules except that S is replaced with a new variable S' (allowing to derive everything from S' that could originally be derived from the start variable S):

 ${
m bS'}
ightarrow arepsilon \qquad {
m S'}
ightarrow {
m XabS'} \qquad {
m bX}
ightarrow {
m aS'a} \qquad {
m X}
ightarrow {
m abc}$

In addition, it has rules that allow to start from the original start variable but switch to S' after the first rule application:

 $\mathsf{S}\to\mathsf{XabS'}$

Start Variable in Right-Hand Side of Rules: Proof

Proof.

Let $G = \langle V, \Sigma, R, S \rangle$ be a grammar and $S' \notin V$ be a new variable. Construct rule set R' from R as follows:

- ▶ for every rule $r \in R$, add a rule r' to R', where r' is the result of replacing all occurences of *S* in *r* with *S'*.
- For every rule S → w ∈ R, add a rule S → w' to R', where w' is the result of replacing all occurences of S in w with S'.

Then
$$\mathcal{L}(G) = \mathcal{L}(\langle V \cup \{S'\}, \Sigma, R', S \rangle).$$

Note that the rules in R' are not fundamentally different from the rules in R. In particular:

• If
$$R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$$
 then $R' \subseteq V' \times (\Sigma \cup \Sigma V' \cup \{\varepsilon\})$.

▶ If $R \subseteq V \times (V \cup \Sigma)^*$ then $R' \subseteq V' \times (V' \cup \Sigma)^*$.

Epsilon Rules

Theorem

For every grammar G with rules $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Epsilon Rules: Example

Let's again first illustrate the idea.Consider $G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$ with the following rules in R:

 $\mathsf{S} \to \varepsilon \qquad \mathsf{S} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{X} \qquad \mathsf{X} \to \mathsf{a} \mathsf{Y} \qquad \mathsf{Y} \to \mathsf{b} \mathsf{Y} \qquad \mathsf{Y} \to \varepsilon$

- $\bullet \quad \text{The start variable does not occur on a right-hand side. } \checkmark$
- Otermine the set of variables that can be replaced with the empty word: V_e = {S, Y}.
- I Eliminate forbidden rules: <u>Y</u>//// *€*
- If a variable from V_ε occurs in the right-hand side, add another rule that directly emulates a subsequent replacement with the empty word: X → a and Y → b

Epsilon Rules

Theorem

For every grammar G with rules $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle V, \Sigma, R, S \rangle$ be a grammar s.t. $R \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$. Use the previous proof to construct grammar $G' = \langle V', \Sigma, R', S \rangle$ s.t. $R' \subseteq V' \times (\Sigma \cup \Sigma(V' \setminus \{S\}) \cup \{\varepsilon\})$ and $\mathcal{L}(G') = \mathcal{L}(G)$. Let $V_{\varepsilon} = \{A \mid A \to \varepsilon \in R'\}$.

Let R'' be the rule set that is created from R' by removing all rules of the form $A \to \varepsilon$ ($A \neq S$). Additionally, for every rule of the form $B \to xA$ with $A \in V_{\varepsilon}, B \in V', x \in \Sigma$ we add a rule $B \to x$ to R''. Then $G'' = \langle V', \Sigma, R'', S \rangle$ is regular and $\mathcal{L}(G) = \mathcal{L}(G'')$. Exercise (Slido)

Consider $G = \langle \{S, X, Y\}, \{a, b\}, R, S \rangle$ with the following rules in R:

- $\mathsf{S} \to \varepsilon \qquad \qquad \mathsf{S} \to \mathsf{a} \mathsf{X}$
- $\mathsf{X} \to \mathtt{a} \mathsf{X} \qquad \mathsf{X} \to \mathtt{a} \mathsf{Y}$
- $\mathsf{Y} \to \mathsf{b}\mathsf{Y} \qquad \mathsf{Y} \to \varepsilon$
 - Is G a regular grammar?
 Is L(G) regular?

- **Regular grammars restrict** the usage of ε in rules.
- This restriction is not necessary for the characterization of regular languages but convenient if we want to prove something for all regular languages.