Theory of Computer Science

B2. Regular Grammars: e-Rules

Gabriele Roger

University of Basel

March 3, 2025

/22



Theory of Computer Science
March 3, 2025 — B2. Regular Grammars: e-Rules

B2.1 Recap

B2.2 Epsilon Rules

2/22



Content of the Course

computability & | | context-free
decidability languages
B complexity context-sensitive
theory — and Type-0
languages

3/22



B2. Regular Grammars: e-Rules Recap

B2.1 Recap

4/22



B2. Regular Grammars: e-Rules

Recap: Regular Grammars

Definition (Regular Grammars)

A regular grammar is a 4-tuple (V, X, R, S) with
» V finite set of variables (nonterminal symbols)
» Y finite alphabet of terminal symbols with V N¥ = ()
> RC (VX (ZUXV))U{(S,¢e)} finite set of rules
> ifS—cecR, thereisno X e V,yeX with X —-ySeR
» S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.

How restrictive is this? If we don't restrict the usage of ¢ as
right-hand side of a rule, what does this change?
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B2. Regular Grammars: e-Rules

Question (Slido)

With a regular grammar, how many steps does it
take to derive a non-empty word (over X) from
the start variable?

Recap



B2. Regular Grammars: e-Rules Recap

Recap: Regular Languages

A language is regular if it is generated by some regular grammar.
Definition (Regular Language)

A language L C ¥* is regular
if there exists a regular grammar G with £(G) = L.
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B2.2 Epsilon Rules
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B2. Regular Grammars: e-Rules

Our Plan

We are going to show that every grammar with rules
RCVx(XZuxXVu{e)}

generates a regular language.

Epsilon Rules
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B2. Regular Grammars: e-Rules Epsilon Rules

Question

This is much simpler!
Why don’t we define

. regular languages
ﬁ k\‘ via such grammars?
%

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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B2. Regular Grammars: e-Rules Epsilon Rules

Question
%
. - prd
Both variants (restricting the occurrence of ¢ on g'a

the right-hand side of rules or not) characterize
exactly the regular languages.

In the following situations, which variant would you prefer?
» You want to prove something for all regular languages.

» You want to specify a grammar to establish
that a certain language is regular.

» You want to write an algorithm that takes a grammar
for a regular language as input.
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B2. Regular Grammars: e-Rules Epsilon Rules

Our Plan

We are going to show that every grammar with rules
RCVx(XUuzVUu{e})

generates a regular language.

» The proof will be constructive, i.e. it will tell us how to
construct a regular grammar for a language
that is given by such a more general grammar.

> Two steps:

@ Eliminate the start variable from the right-hand side of rules.
@ Eliminate forbidden occurrences of ¢.
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B2. Regular Grammars: e-Rules Epsilon Rules

Start Variable in Right-Hand Side of Rules

For every type-0 language L there is a grammar where the start
variable does not occur on the right-hand side of any rule.

Theorem

For every grammar G = (V¥ R, S) there is a grammar
G' = (V',L,R',S) with rules

R C(VUXD)*V(VUD)* x (V'\{S}UX)* such that
L(G) = L(G).

Note: this theorem is true for all grammars.
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B2. Regular Grammars: e-Rules Epsilon Rules

Start Variable in Right-Hand Side of Rules: Example

Before we prove the theorem, let’s illustrate its idea.
Consider G = ({S, X}, {a,b}, R,S) with the following rules in R:

bS — ¢ S — XabS bX — aSa X — abc

The new grammar has all original rules except that S is replaced
with a new variable S’ (allowing to derive everything from S’ that
could originally be derived from the start variable S):

bS — ¢ S’ — Xab§’ bX — aS’a X — abc

In addition, it has rules that allow to start from the original start
variable but switch to S’ after the first rule application:

S — Xab$'
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B2. Regular Grammars: e-Rules Epsilon Rules

Start Variable in Right-Hand Side of Rules: Proof

Proof.
Let G =(V,XL,R,S) be a grammar and S’ ¢ V be a new variable.
Construct rule set R’ from R as follows:

» for every rule r € R, add a rule r’ to R’, where r’ is the result
of replacing all occurences of S in r with S’

> foreveryrule S— w e R, add arule S — w’ to R, where w/
is the result of replacing all occurences of S in w with S’
Then L(G) = L(VU{S'}, X, R, S)). O
Note that the rules in R’ are not fundamentally different from the

rules in R. In particular:
> IfRCVx(ZUXZVU{e}) then R C V' x (ZUXV' U{e}).
> IfRCV x(VUX)* then RFR C V' x (VUL
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B2. Regular Grammars: e-Rules Epsilon Rules

Epsilon Rules

Theorem
For every grammar G with rules R C V x (XUXV U{e})
there is a regular grammar G' with L(G) = L(G").
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B2. Regular Grammars: e-Rules Epsilon Rules

Epsilon Rules: Example

Let's again first illustrate the idea.Consider
G = ({S,X,Y},{a,b}, R,S) with the following rules in R:

S—e¢ S - aX X — aX X = a¥Y Y = bY Y s ¢

© The start variable does not occur on a right-hand side. v/

@ Determine the set of variables that can be replaced with the
empty word: V. ={S,Y}.
© Eliminate forbidden rules: Y//4#/¢

@ If a variable from V. occurs in the right-hand side,
add another rule that directly emulates a subsequent
replacement with the empty word: X - aand Y — b
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Epsilon Rules

Theorem
For every grammar G with rules R C V x (XUXV U {e})
there is a regular grammar G' with L(G) = L(G").

Proof.

Let G =(V,X,R,S) beagrammarst. RC V x (X UXV U{e}).
Use the previous proof to construct grammar G’ = (V/, X R’ S)
st. RRCV x(ZUX(V'\{S})u{e}) and L(G') = E(G)

Let V. ={A|A—c€ R}

Let R” be the rule set that is created from R’ by removing all rules
of the form A — ¢ (A # S). Additionally, for every rule of the form
B—+xAwithAec V., Be V' ,xe X weaddarule B— xtoR".

Then G” = (V' %, R",S) is regular and L(G) = L(G"). O
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B2. Regular Grammars: e-Rules Epsilon Rules

Exercise (Slido)

Consider G = ({S, X, Y}, {a,b}, R,S) with the
following rules in R:

S—e¢ S — aX
X — aX X —aY
Y — bY Y —>e¢

> |Is G a regular grammar?
» Is £(G) regular?
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B2. Regular Grammars: e-Rules Summary

Summary

» Regular grammars restrict the usage of < in rules.

P This restriction is not necessary for the characterization of
regular languages but convenient if we want to prove
something for all regular languages.
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