
Theory of Computer Science
B1. Formal Languages & Grammars

Gabriele Röger

University of Basel

February 26, 2025

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Introduction

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Course Contents

Parts of the course:

A. background
▷ mathematical foundations and proof techniques

B. automata theory and formal languages
▷ What is a computation?

C. Turing computability ▷ What can be computed at all?

D. complexity theory ▷ What can be computed efficiently?

E. more computability theory ▷ Other models of computability

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

simple access control

card reader and push sensor

card can either be valid or invalid

locked unlocked

push

validcard
push,

invalidcard
validcard,
invalidcard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

A Controller for a Turnstile

CC BY-SA 3.0, author: Stolbovsky

simple access control

card reader and push sensor

card can either be valid or invalid

locked unlocked

push

validcard
push,

invalidcard
validcard,
invalidcard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Turnstile Example: Decision Problem

Definition (Decision Problem for Turnstile Example)

Given: Sequence of actions from set
{push, validcard, invalidcard}

Question: If the turnstile was initially locked,
is it unlocked after the given sequence of actions?
That is, does the input sequence contain
an action validcard such that afterwards
there is never an occurrence of push?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Decision Problems: Given-Question Form

Definition (Decision Problem, Given-Question Form)

Given: possible input
Question: does the given input have a certain property?

often infinitely many instances (possible inputs).

we want to characterize the set of all “Yes” instances

formal languages are an alternative for representing such
decision problems, using this set perspective instead of the
given-question form.

follow-up question: how can we characterize such a possibly
infinite set with a final representation?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Decision Problems: Given-Question Form

Definition (Decision Problem, Given-Question Form)

Given: possible input
Question: does the given input have a certain property?

often infinitely many instances (possible inputs).

we want to characterize the set of all “Yes” instances

formal languages are an alternative for representing such
decision problems, using this set perspective instead of the
given-question form.

follow-up question: how can we characterize such a possibly
infinite set with a final representation?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Decision Problems: Given-Question Form

Definition (Decision Problem, Given-Question Form)

Given: possible input
Question: does the given input have a certain property?

often infinitely many instances (possible inputs).

we want to characterize the set of all “Yes” instances

formal languages are an alternative for representing such
decision problems, using this set perspective instead of the
given-question form.

follow-up question: how can we characterize such a possibly
infinite set with a final representation?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Decision Problems: Given-Question Form

Definition (Decision Problem, Given-Question Form)

Given: possible input
Question: does the given input have a certain property?

often infinitely many instances (possible inputs).

we want to characterize the set of all “Yes” instances

formal languages are an alternative for representing such
decision problems, using this set perspective instead of the
given-question form.

follow-up question: how can we characterize such a possibly
infinite set with a final representation?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Decision Problems: Given-Question Form

Definition (Decision Problem, Given-Question Form)

Given: possible input
Question: does the given input have a certain property?

often infinitely many instances (possible inputs).

we want to characterize the set of all “Yes” instances

formal languages are an alternative for representing such
decision problems, using this set perspective instead of the
given-question form.

follow-up question: how can we characterize such a possibly
infinite set with a final representation?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Formal Languages

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Content of the Course

ToCS

automata theory &
formal languages

computability &
decidability

complexity
theory

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}

Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }

|aba| = 3, |b| = 1, |ε| = 0

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ.
The empty word (the empty sequence of elements) is denoted by ε.
Σ∗ denotes the set of all words over Σ.
Σ+ (= Σ∗ \ {ε}) denotes the set of all non-empty words over Σ.

We write |w | for the length of a word w .

A formal language (over alphabet Σ) is a subset of Σ∗.

Example

Σ = {a, b}
Σ∗ = {ε, a, b, aa, ab, ba, bb, . . . }
|aba| = 3, |b| = 1, |ε| = 0

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Examples

Example (Languages over Σ = {a, b})
S1 = {a, aa, aaa, aaaa, . . . } = {a}+

S2 = Σ∗

S3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }
S4 = {ε}
S5 = ∅
S6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }
S7 = {w ∈ Σ∗ | |w | = 3}

S6

= {aaa, aab, aba, baa, bba, bab, abb, bbb}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Languages: Turnstile Example

Example

Σ = {push, validcard, invalidcard}

Lturnstile = {w ∈ Σ∗ | there is an occurrence of validcard in w

and after the last occurrence of validcard

there is no occurrence of push}

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Exercise (slido)

Consider Σ = {push, validcard}.

What is |pushvalidcard|?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Questions

Questions?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Ways to Specify Formal Languages?

Sought: General concepts to define (often infinite) formal
languages with finite descriptions.

today: grammars

later: automata, regular expressions, . . .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Content of the Course

ToCS

automata theory &
formal languages

grammars

regular
languages

context-free
languages

context-sensitive
and Type-0
languages

computability &
decidability

complexity
theory

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammar: Example

Variables V = {S,X,Y}
Alphabet Σ = {a, b, c}.
Production rules:

S → ε X → aXYc cY → Yc

S → X X → abc bY → bb

You start from S and may in each step replace the left-hand side of
a rule with the right-hand side of the same rule. This way, derive a
word over Σ.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammar: Example

Variables V = {S,X,Y}
Alphabet Σ = {a, b, c}.
Production rules:

S → ε X → aXYc cY → Yc

S → X X → abc bY → bb

You start from S and may in each step replace the left-hand side of
a rule with the right-hand side of the same rule. This way, derive a
word over Σ.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Short-hand Notation for Rule Sets

We abbreviate several rules with the same left-hand side in a single
line, using “|” for separating the right-hand sides.

For example, we write

X → 0Y1 | XY

for:

X → 0Y1 and

X → XY

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Exercise

Variables V = {S,X,Y}
Alphabet Σ = {a, b, c}.
Production rules:

S → ε | X
X → aXYc | abc
cY → Yc

bY → bb

Derive word aabbcc starting from S.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Application: Content Generation in Games

http://www.gameaipro.com/

GameAIPro 2, chapter 40
Procedural Content Generation:
An Overview by Gillian Smith

http://www.gameaipro.com/
http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter40_Procedural_Content_Generation_An_Overview.pdf
http://www.gameaipro.com/GameAIPro2/GameAIPro2_Chapter40_Procedural_Content_Generation_An_Overview.pdf

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Questions

Questions?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Definition (Grammars)

A grammar is a 4-tuple ⟨V ,Σ,R,S⟩ with:
V finite set of variables (nonterminal symbols)

Σ finite alphabet of terminal symbols with V ∩ Σ = ∅
R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ finite set of rules

S ∈ V start variable

A rule is sometimes also called a production or a production rule.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rule Sets

What exactly does R ⊆ (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗ mean?

(V ∪ Σ)∗: all words over (V ∪ Σ)

for languages L and L′, their concatenation is the language
LL′ = {xy | x ∈ L and y ∈ L′}.
(V ∪ Σ)∗V (V ∪ Σ)∗: words composed from

a word over (V ∪ Σ),
followed by a single variable symbol,
followed by a word over (V ∪ Σ)

→ word over (V ∪ Σ) containing at least one variable symbol

×: Cartesian product

(V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗: set of all pairs ⟨x , y⟩, where
x word over (V ∪ Σ) with at least one variable and
y word over (V ∪ Σ)

Instead of ⟨x , y⟩ we usually write rules in the form x → y .

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Rules: Examples

Example

Let Σ = {a, b, c} and V = {X,Y,Z}.

Some examples of rules in (V ∪ Σ)∗V (V ∪ Σ)∗ × (V ∪ Σ)∗:

X → XaY

Yb → a

XY → ε

XYZ → abc

abXc → XYZ

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Derivations

Definition (Derivations)

Let ⟨V ,Σ,R,S⟩ be a grammar. A word v ∈ (V ∪ Σ)∗ can be
derived from word u ∈ (V ∪ Σ)+ (written as u ⇒ v) if

1 u = xyz , v = xy ′z with x , z ∈ (V ∪ Σ)∗ and

2 there is a rule y → y ′ ∈ R.

We write: u ⇒∗ v if v can be derived from u in finitely many steps
(i. e., by using n derivations for n ∈ N0).

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Language Generated by a Grammar

Definition (Languages)

The language generated by a grammar G = ⟨V ,Σ,P,S⟩

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

is the set of all words from Σ∗ that can be derived from S
with finitely many rule applications.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Example (Languages over Σ = {a, b})
L1 = {a, aa, aaa, aaaa, . . . } = {a}+

Example grammars: blackboard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Example (Languages over Σ = {a, b})

L2 = Σ∗

Example grammars: blackboard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Example (Languages over Σ = {a, b})

L3 = {anbn | n ≥ 0} = {ε, ab, aabb, aaabbb, . . . }

Example grammars: blackboard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Example (Languages over Σ = {a, b})

L4 = {ε}

Example grammars: blackboard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Example (Languages over Σ = {a, b})

L5 = ∅

Example grammars: blackboard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Example (Languages over Σ = {a, b})

L6 = {w ∈ Σ∗ | w contains twice as many as as bs}

S6

= {ε, aab, aba, baa, . . . }

Example grammars: blackboard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Grammars

Example (Turnstile)

G = ⟨{S,U}, {push, validcard, invalidcard},R,S⟩
with the following production rules in R:

S → pushS

S → invalidcardS

S → validcardU

U → invalidcardU

U → validcardU

U → ε

U → pushS

locked unlocked

push

validcard
push,

invalidcard
validcard,
invalidcard

L(G) = Lturnstile from section “formal languages”

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Exercise

Specify a grammar that generates language

L = {w ∈ {a, b}∗ | |w | = 3}.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Questions

Questions?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Chomsky Hierarchy

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Content of the Course

ToCS

automata theory &
formal languages

grammars Chomsky
hierarchy

regular
languages

context-free
languages

context-sensitive
and Type-0
languages

computability &
decidability

complexity
theory

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Noam Chomsky

Avram Noam Chomsky (*1928)

”the father of modern linguistics”

American linguist, philosopher,
cognitive scientist, social critic,
and political activist

combined linguistics, cognitive science and computer science

opponent of U.S. involvement in the Vietnam war

there is a Wikipedia page solemnly on his political positions

CC BY 2.0 / Andrew Rusk

→ Organized grammars into the Chomsky hierarchy.

https://en.wikipedia.org/wiki/Political_positions_of_Noam_Chomsky

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Chomsky Hierarchy

Definition (Chomsky Hierarchy)

Every grammar is of type 0 (all rules allowed).

Grammar is of type 1 (context-sensitive)
if all rules are of the form αBγ → αβγ
with B ∈ V and α, γ ∈ (V ∪ Σ)∗ and β ∈ (V ∪ Σ)+

Grammar is of type 2 (context-free)
if all rules are of the form A → w ,
where A ∈ V and w ∈ (V ∪ Σ)+.

Grammar is of type 3 (regular)
if all rules are of the form A → w ,
where A ∈ V and w ∈ Σ ∪ ΣV .

special case: rule S → ε is always allowed if S is the start variable
and never occurs on the right-hand side of any rule.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Chomsky Hierarchy: Examples

Examples: blackboard

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Chomsky Hierarchy

Definition (Type 0–3 Languages)

A language L ⊆ Σ∗ is of type 0 (type 1, type 2, type 3)
if there exists a type-0 (type-1, type-2, type-3) grammar G
with L(G) = L.

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Type k Language: Example (slido)

Example

Consider the language L generated by the grammar
⟨{F,A,N,C,D}, {a, b, c,¬,∧,∨, (,)},R,F⟩
with the following rules R:

F → A A → a N → ¬F
F → N A → b C → (F ∧ F)

F → C A → c D → (F ∨ F)

F → D

Questions:

Is L a type-0 language?

Is L a type-1 language?

Is L a type-2 language?

Is L a type-3 language?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Chomsky Hierarchy

regular languages (type 3)

context free languages (type 2)

context sensitive languages (type 1)

Type-0 languages

All languages

Note: Not all languages can be described by grammars. (Proof?)

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Chomsky Hierarchy

regular languages (type 3)

context free languages (type 2)

context sensitive languages (type 1)

Type-0 languages

All languages

Note: Not all languages can be described by grammars. (Proof?)

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Questions

Questions?

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Summary

Introduction Formal Languages Grammars Chomsky Hierarchy Summary

Summary

Languages are sets of symbol sequences.

Grammars are one possible way to specify languages.

Language generated by a grammar is the set of all words
(of terminal symbols) derivable from the start symbol.

Chomsky hierarchy distinguishes between languages
at different levels of expressiveness.

	Introduction
	

	Formal Languages
	

	Grammars
	

	Chomsky Hierarchy
	

	Summary
	

