Theory of Computer Science B1. Formal Languages & Grammars

Gabriele Röger

University of Basel

February 26, 2025

1 / 37

Theory of Computer Science

February 26, 2025 — B1. Formal Languages & Grammars

- **B1.1** Introduction
- B1.2 Formal Languages
- B1.3 Grammars
- B1.4 Chomsky Hierarchy
- B1.5 Summary

2 / 37

B1. Formal Languages & Grammars Introduction

B1.1 Introduction

B1. Formal Languages & Grammars

Introduction

Course Contents

Parts of the course:

- A. background
 - ▶ mathematical foundations and proof techniques
- B. automata theory and formal languages
 - ▷ What is a computation?
- C. Turing computability ▷ What can be computed at all?
- D. complexity theory ▷ What can be computed efficiently?
- E. more computability theory ▷ Other models of computability

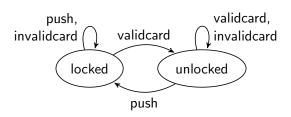
3 / 37

A Controller for a Turnstile

simple access control

- card reader and push sensor
- card can either be valid or invalid

CC BY-SA 3.0, author: Stolbovsky



5 / 37

B1. Formal Languages & Grammars

Introduction

Decision Problems: Given-Question Form

Definition (Decision Problem, Given-Question Form)

Given: possible input

Question: does the given input have a certain property?

- often infinitely many instances (possible inputs).
- we want to characterize the set of all "Yes" instances
- ▶ formal languages are an alternative for representing such decision problems, using this set perspective instead of the given-question form.
- ► follow-up question: how can we characterize such a possibly infinite set with a final representation?

Turnstile Example: Decision Problem

B1. Formal Languages & Grammars

Definition (Decision Problem for Turnstile Example)

Given: Sequence of actions from set

{push, validcard, invalidcard}

Question: If the turnstile was initially locked,

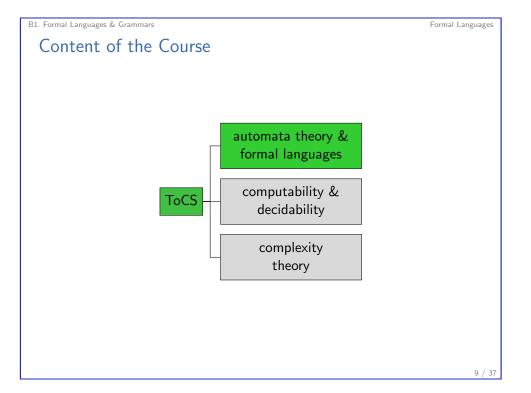
is it unlocked after the given sequence of actions?

That is, does the input sequence contain an action validcard such that afterwards there is never an occurrence of push?

B1. Formal Languages & Grammars Formal Languages

B1.2 Formal Languages

7 / 37



B1. Formal Languages & Grammars

Alphabets and Formal Languages

Definition (Alphabets, Words and Formal Languages)

An alphabet Σ is a finite non-empty set of symbols.

A word over Σ is a finite sequence of elements from Σ .

The empty word (the empty sequence of elements) is denoted by arepsilon.

 Σ^* denotes the set of all words over Σ .

 Σ^+ (= $\Sigma^* \setminus \{\varepsilon\}$) denotes the set of all non-empty words over Σ .

We write |w| for the length of a word w.

A formal language (over alphabet Σ) is a subset of Σ^* .

```
Example \begin{split} \Sigma &= \{ \mathtt{a}, \mathtt{b} \} \\ \Sigma^* &= \{ \varepsilon, \mathtt{a}, \mathtt{b}, \mathtt{aa}, \mathtt{ab}, \mathtt{ba}, \mathtt{bb}, \dots \} \\ |\mathtt{aba}| &= 3, |\mathtt{b}| = 1, |\varepsilon| = 0 \end{split}
```

10 / 37

B1. Formal Languages & Grammars

Formal Languages

Languages: Examples

Example (Languages over $\Sigma = \{a,b\})$

- ► $S_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- $ightharpoonup S_2 = \Sigma^*$
- ▶ $S_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, ...\}$
- $ightharpoonup S_4 = \{\varepsilon\}$
- \triangleright $S_5 = \emptyset$
- ► $S_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ = $\{ \varepsilon, aab, aba, baa, \dots \}$
- ► $S_7 = \{w \in \Sigma^* \mid |w| = 3\}$ = $\{aaa, aab, aba, baa, bba, bab, abb, bbb\}$

B1. Formal Languages & Grammars

Formal Languages

Languages: Turnstile Example

Example

 $\Sigma = \{ push, validcard, invalidcard \}$

 $\mathcal{L}_{\mathsf{turnstile}} = \{ w \in \Sigma^* \mid \mathsf{there} \; \mathsf{is} \; \mathsf{an} \; \mathsf{occurrence} \; \mathsf{of} \; \mathsf{validcard} \; \mathsf{in} \; w \\ \quad \mathsf{and} \; \mathsf{after} \; \mathsf{the} \; \mathsf{last} \; \mathsf{occurrence} \; \mathsf{of} \; \mathsf{validcard} \\ \quad \mathsf{there} \; \mathsf{is} \; \mathsf{no} \; \mathsf{occurrence} \; \mathsf{of} \; \mathsf{push} \}$

11 / 37

B1. Formal Languages & Grammars

Formal Languages

Exercise (slido)

13 / 37

B1. Formal Languages & Grammars

Formal Languages

Ways to Specify Formal Languages?

Sought: General concepts to define (often infinite) formal languages with finite descriptions.

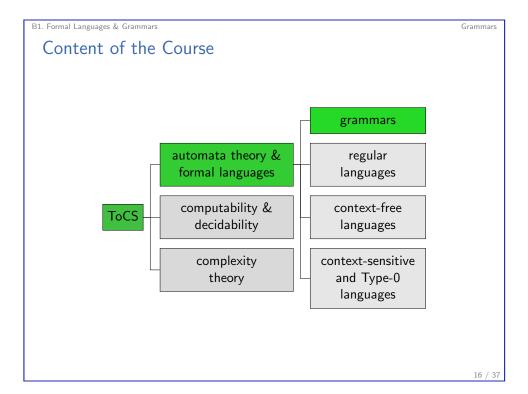
► today: grammars

▶ later: automata, regular expressions, ...

14 / 37

B1. Formal Languages & Grammars Grammars

B1.3 Grammars



Grammar: Example

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}$. Production rules:

 $\begin{array}{lll} \mathsf{S} \to \varepsilon & \mathsf{X} \to \mathsf{a} \mathsf{X} \mathsf{Y} \mathsf{c} & \mathsf{c} \mathsf{Y} \to \mathsf{Y} \mathsf{c} \\ \mathsf{S} \to \mathsf{X} & \mathsf{X} \to \mathsf{a} \mathsf{b} \mathsf{c} & \mathsf{b} \mathsf{Y} \to \mathsf{b} \mathsf{b} \end{array}$

You start from S and may in each step replace the left-hand side of a rule with the right-hand side of the same rule. This way, derive a word over Σ .

17 / 37

Short-hand Notation for Rule Sets

We abbreviate several rules with the same left-hand side in a single line, using "|" for separating the right-hand sides.

For example, we write

B1. Formal Languages & Grammars

$$\mathsf{X} \to \mathsf{0Y1} \mid \mathsf{XY}$$

for:

 $X \rightarrow \text{0Y1}$ and

 $\mathsf{X}\to\mathsf{X}\mathsf{Y}$

18 / 37

B1. Formal Languages & Grammars

Grammars

Exercise

Variables $V = \{S, X, Y\}$ Alphabet $\Sigma = \{a, b, c\}$. Production rules:

$$\begin{split} \mathsf{S} &\to \varepsilon \mid \mathsf{X} \\ \mathsf{X} &\to \mathsf{a} \mathsf{X} \mathsf{Y} \mathsf{c} \mid \mathsf{a} \mathsf{b} \mathsf{c} \\ \mathsf{c} \mathsf{Y} &\to \mathsf{Y} \mathsf{c} \end{split}$$

 $\mathtt{bY} \to \mathtt{bb}$

Derive word aabbcc starting from S.

B1. Formal Languages & Grammars

Grammars

Application: Content Generation in Games

- ▶ http://www.gameaipro.com/
- GameAIPro 2, chapter 40
 Procedural Content Generation:
 An Overview by Gillian Smith

Grammars

Grammars

Definition (Grammars)

A grammar is a 4-tuple $\langle V, \Sigma, R, S \rangle$ with:

- V finite set of variables (nonterminal symbols)
- $ightharpoonup \Sigma$ finite alphabet of terminal symbols with $V \cap \Sigma = \emptyset$
- ▶ $R \subseteq (V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ finite set of rules
- \triangleright $S \in V$ start variable

A rule is sometimes also called a production or a production rule.

21 / 37

rammars

Rule Sets

B1. Formal Languages & Grammars

What exactly does $R \subseteq (V \cup \Sigma)^* V (V \cup \Sigma)^* \times (V \cup \Sigma)^*$ mean?

- ▶ $(V \cup \Sigma)^*$: all words over $(V \cup \Sigma)$
- for languages L and L', their concatenation is the language $LL' = \{xy \mid x \in L \text{ and } y \in L'\}.$
- ▶ $(V \cup \Sigma)^* V(V \cup \Sigma)^*$: words composed from
 - ightharpoonup a word over $(V \cup \Sigma)$,
 - ► followed by a single variable symbol.
 - ▶ followed by a word over $(V \cup \Sigma)$
 - \rightarrow word over $(V \cup \Sigma)$ containing at least one variable symbol
- X: Cartesian product
- ▶ $(V \cup \Sigma)^* V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$: set of all pairs $\langle x, y \rangle$, where x word over $(V \cup \Sigma)$ with at least one variable and y word over $(V \cup \Sigma)$
- ▶ Instead of $\langle x, y \rangle$ we usually write rules in the form $x \to y$.

22 / 37

B1. Formal Languages & Grammars

Grammars

Rules: Examples

Example

Let $\Sigma = \{a, b, c\}$ and $V = \{X, Y, Z\}$.

Some examples of rules in $(V \cup \Sigma)^*V(V \cup \Sigma)^* \times (V \cup \Sigma)^*$:

 $\mathsf{X} o \mathsf{XaY}$

 $\mathsf{Yb} o \mathsf{a}$

 $\mathsf{XY} \to \varepsilon$

 $\mathsf{X}\mathsf{Y}\mathsf{Z}\to\mathtt{abc}$

 $\mathtt{abXc} \to \mathsf{XYZ}$

B1. Formal Languages & Grammars

Gramma

Derivations

Definition (Derivations)

Let $\langle V, \Sigma, R, S \rangle$ be a grammar. A word $v \in (V \cup \Sigma)^*$ can be derived from word $u \in (V \cup \Sigma)^+$ (written as $u \Rightarrow v$) if

- u = xyz, v = xy'z with $x, z \in (V \cup \Sigma)^*$ and
- ② there is a rule $y \to y' \in R$.

We write: $u \Rightarrow^* v$ if v can be derived from u in finitely many steps (i. e., by using n derivations for $n \in \mathbb{N}_0$).

23 / 37

Grammars

Language Generated by a Grammar

Definition (Languages)

The language generated by a grammar $G = \langle V, \Sigma, P, S \rangle$

$$\mathcal{L}(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

is the set of all words from Σ^* that can be derived from S with finitely many rule applications.

25 / 37

validcard.

invalidcard

Example (Languages over $\Sigma = \{a, b\}$)

- ▶ $L_1 = \{a, aa, aaa, aaaa, ...\} = \{a\}^+$
- $ightharpoonup L_2 = \Sigma^*$
- ► $L_3 = \{a^n b^n \mid n \ge 0\} = \{\varepsilon, ab, aabb, aaabbb, \dots\}$
- $ightharpoonup L_4 = \{\varepsilon\}$
- $ightharpoonup L_5 = \emptyset$
- ▶ $L_6 = \{ w \in \Sigma^* \mid w \text{ contains twice as many as as bs} \}$ = $\{ \varepsilon, \text{aab}, \text{aba}, \text{baa}, \dots \}$

Example grammars: blackboard

26 / 37

B1. Formal Languages & Grammars

Grammars

Example (Turnstile)

 $G = \langle \{S, U\}, \{push, validcard, invalidcard\}, R, S \rangle$ with the following production rules in R:

invalidcard \(\int \) validcard

- $\mathsf{S} \to \mathtt{push}\,\mathsf{S}$
- $\mathsf{S} \to \mathtt{invalid} \mathtt{card} \, \mathsf{S}$
- $\mathsf{S} \to \mathtt{validcard}\,\mathsf{U}$
- $U \to \mathtt{invalidcard}\, U$
- $\mathsf{U} \to \mathtt{validcard}\,\mathsf{U}$
- $\mathsf{U} o arepsilon$
- $U\to \mathtt{push}\, S$

 $\mathcal{L}(\textit{G}) = \mathcal{L}_{\text{turnstile}}$ from section "formal languages"

B1. Formal Languages & Grammars

Grammars

Exercise

Specify a grammar that generates language

$$L = \{ w \in \{ a, b \}^* \mid |w| = 3 \}.$$

B1. Formal Languages & Grammars Chomsky Hierarchy

B1.4 Chomsky Hierarchy

29 / 37

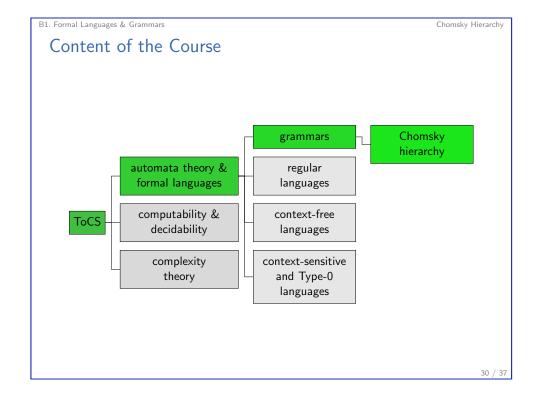
B1. Formal Languages & Grammars

Chomsky Hierarchy

Noam Chomsky

- ► Avram Noam Chomsky (*1928)
- ▶ "the father of modern linguistics"
- American linguist, philosopher, cognitive scientist, social critic, and political activist

- combined linguistics, cognitive science and computer science
- opponent of U.S. involvement in the Vietnam war
- there is a Wikipedia page solemnly on his political positions
- → Organized grammars into the Chomsky hierarchy.



B1. Formal Languages & Grammars

Chomsky Hierarchy

Chomsky Hierarchy

Definition (Chomsky Hierarchy)

- Every grammar is of type 0 (all rules allowed).
- ► Grammar is of type 1 (context-sensitive) if all rules are of the form $\alpha B \gamma \to \alpha \beta \gamma$ with $B \in V$ and $\alpha, \gamma \in (V \cup \Sigma)^*$ and $\beta \in (V \cup \Sigma)^+$
- ► Grammar is of type 2 (context-free) if all rules are of the form $A \rightarrow w$, where $A \in V$ and $w \in (V \cup \Sigma)^+$.
- ► Grammar is of type 3 (regular) if all rules are of the form $A \rightarrow w$. where $A \in V$ and $w \in \Sigma \cup \Sigma V$.

special case: rule $S \to \varepsilon$ is always allowed if S is the start variable and never occurs on the right-hand side of any rule.

31 / 37

Chomsky Hierarchy

Definition (Type 0-3 Languages)

A language $L \subseteq \Sigma^*$ is of type 0 (type 1, type 2, type 3) if there exists a type-0 (type-1, type-2, type-3) grammar Gwith $\mathcal{L}(G) = L$.

33 / 37

35 / 37

Chomsky Hierarchy

B1. Formal Languages & Grammars

Type k Language: Example (slido)

Example

Consider the language L generated by the grammar $\langle \{F, A, N, C, D\}, \{a, b, c, \neg, \land, \lor, (,)\}, R, F \rangle$ with the following rules R:

 $\mathsf{F} \to \mathsf{A}$

 $\mathsf{N} \to \neg \mathsf{F}$

 $\mathsf{F} \to \mathsf{N}$ $\mathsf{A} \to \mathsf{b}$ $\mathsf{C} \to (\mathsf{F} \wedge \mathsf{F})$

 $F \rightarrow C$ $A \rightarrow c$ $D \rightarrow (F \lor F)$

 $\mathsf{F} \to \mathsf{D}$

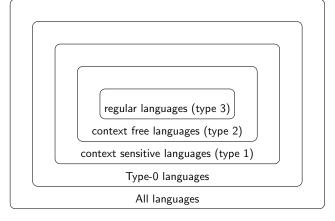
Questions:

- ► Is *L* a type-0 language?
- ► Is *L* a type-1 language?
- ► Is *L* a type-2 language?
- ► Is *L* a type-3 language?

34 / 37

B1. Formal Languages & Grammars

Chomsky Hierarchy



Note: Not all languages can be described by grammars. (Proof?)

B1. Formal Languages & Grammars

B1.5 Summary

B1. Formal Languages & Grammars

Summary

Summary

- ► Languages are sets of symbol sequences.
- ► Grammars are one possible way to specify languages.
- Language generated by a grammar is the set of all words (of terminal symbols) derivable from the start symbol.
- ► Chomsky hierarchy distinguishes between languages at different levels of expressiveness.