Theory of Computer Science A3. Proof Techniques

Gabriele Röger

University of Basel

February 24, 2025

Proofs & Proof Strategies

What is a Proof?

Proofs & Proof Strategies

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

What is a Proof?

Proofs & Proof Strategies

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

What is a statement?

Mathematical Statements

Proofs & Proof Strategies

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

The set of preconditions is sometimes empty.

German: Mathematische Aussage

Examples of Mathematical Statements

Examples (some true, some false):

Proofs & Proof Strategies

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ be a prime number with $p \geq 3$. Then p is odd."
- "All prime numbers p > 3 are odd."
- "If 4 is a prime number then $2 \cdot 3 = 4$.

What are the preconditions, what are the conclusions?

On what Statements can we Build the Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

We can use:

Proofs & Proof Strategies

- axioms: statements that are assumed to always be true in the current context
- theorems and lemmas: statements that were already proven
 - lemma: an intermediate tool
 - theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

German: Axiom, Theorem/Satz, Lemma, Prämisse/Annahme

What is a Logical Step?

Proofs & Proof Strategies

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

What is a Logical Step?

Proofs & Proof Strategies

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the confusion that some statement must be true.

Each step directly follows

- from the axioms.
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

The Role of Definitions

Definition

Proofs & Proof Strategies

A set is an unordered collection of distinct objects.

The objects in a set are called the elements of the set. A set is said to contain its elements.

We write $x \in S$ to indicate that x is an element of set S, and $x \notin S$ to indicate that S does not contain x.

The set that does not contain any objects is the *empty set* \emptyset .

The Role of Definitions

Definition

Proofs & Proof Strategies

A set is an unordered collection of distinct objects.

The objects in a set are called the elements of the set. A set is said to contain its elements.

We write $x \in S$ to indicate that x is an element of set S, and $x \notin S$ to indicate that S does not contain x.

The set that does not contain any objects is the *empty set* \emptyset .

- A definition introduces an abbreviation.
- Whenever we say "set", we could instead say "an unordered collection of distinct objects" and vice versa.
- Definitions can also introduce notation.

German: Definition

Disproofs

Proofs & Proof Strategies

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.

Disproofs

Proofs & Proof Strategies

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.

Example (False statement)

"If $p \in \mathbb{N}_0$ is a prime number then p is odd."

Refutation.

Consider natural number 2 as a counter example. It is prime because it has exactly 2 divisors, 1 and itself. It is not odd, because it is divisible by 2.

German: Widerlegung

Exercise

Proofs & Proof Strategies

You want to disprove the following statement with a counterexample:

If the sun is shining then all kids eat ice cream.

What properties must your counterexample have?

[Discuss with your neighbour; 2 minutes]

A Word on Style

A proof should help the reader to see why the result must be true.

- A proof should be easy to follow.
- Omit unnecessary information.
- Move self-contained parts into separate lemmas.
- In complicated proofs, reveal the overall structure in advance.
- Have a clear line of argument.

A Word on Style

A proof should help the reader to see why the result must be true.

- A proof should be easy to follow.
- Omit unnecessary information.
- Move self-contained parts into separate lemmas.
- In complicated proofs, reveal the overall structure in advance.
- Have a clear line of argument.
- \rightarrow Writing a proof is like writing an essay.

Proofs & Proof Strategies

- "All $x \in S$ with the property P also have the property Q." "For all $x \in S$: if x has property P, then x has property Q."
 - To prove, assume you are given an arbitrary $x \in S$ that has the property P. Give a sequence of proof steps showing that x must have the property Q.
 - To disprove, find a counterexample, i. e., find an $x \in S$ that has property P but not Q and prove this.

Proofs & Proof Strategies

- "A is a subset of B."
 - To prove, assume you have an arbitrary element $x \in A$ and prove that $x \in B$.
 - To disprove, find an element in $x \in A \setminus B$ and prove that $x \in A \setminus B$.

Proofs & Proof Strategies

- "For all $x \in S$: x has property P iff x has property Q." ("iff": "if and only if")
 - To prove, separately prove "if P then Q" and "if Q then P".
 - To disprove, disprove "if P then Q" or disprove "if Q then P".

Proofs & Proof Strategies 000000000000

- \bullet "A = B", where A and B are sets.
 - To prove, separately prove " $A \subseteq B$ " and " $B \subseteq A$ ".
 - To disprove, disprove " $A \subseteq B$ " or disprove " $B \subseteq A$ ".

Proof Techniques

Proofs & Proof Strategies

proof techniques we use in this course:

- direct proof
- indirect proof (proof by contradiction)
- structural induction

Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

German: Direkter Beweis

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies

$$x \in (A \cap B) \cup (A \cap C) \subseteq part$$
:

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) (\subseteq part)$:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that

 $x \in A$ and $x \in B \cup C$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies

Direct Proof

$$x \in (A \cap B) \cup (A \cap C) \subseteq part$$
:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies

Direct Proof

$$x \in (A \cap B) \cup (A \cap C) \subseteq part$$
:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C) \subseteq part$:

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$. and we conclude $x \in (A \cap B) \cup (A \cap C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

 \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

 \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

 \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

. . .

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

 \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

In both cases we conclude $x \in A \cap (B \cup C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

We have shown that every element of $A \cap (B \cup C)$ is an element of $(A \cap B) \cup (A \cap C)$ and vice versa. Thus, both sets are equal.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

Alternative:

$$A \cap (B \cup C) = \{x \mid x \in A \text{ and } x \in B \cup C\}$$

$$= \{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\}$$

$$= \{x \mid (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)\}$$

$$= \{x \mid x \in A \cap B \text{ or } x \in A \cap C\}$$

$$= (A \cap B) \cup (A \cap C)$$

Questions

Questions?

Indirect Proof •000

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Use the assumption to derive a contradiction.
- This shows that the assumption must be false and hence the original statement must be true.

Indirect Proof 0000

Theorem

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Theorem

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Proof.

We prove the theorem by contradiction.

Theorem

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with $A \setminus B = \emptyset$ and $A \not\subseteq B$.

Theorem

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with $A \setminus B = \emptyset$ and $A \not\subseteq B$. Let A and B be such sets.

Theorem

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with $A \setminus B = \emptyset$ and $A \not\subseteq B$.

Let A and B be such sets.

Since $A \not\subset B$ there is some $x \in A$ such that $x \not\in B$.

$\mathsf{Theorem}$

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with $A \setminus B = \emptyset$ and $A \not\subset B$.

Let A and B be such sets.

Since $A \not\subset B$ there is some $x \in A$ such that $x \not\in B$.

For this x it holds that $x \in A \setminus B$.

$\mathsf{Theorem}$

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Proof.

We prove the theorem by contradiction.

Assume that there are sets A and B with $A \setminus B = \emptyset$ and $A \not\subseteq B$.

Let A and B be such sets.

Since $A \not\subset B$ there is some $x \in A$ such that $x \not\in B$.

For this x it holds that $x \in A \setminus B$.

This is a contradiction to $A \setminus B = \emptyset$.

We conclude that the assumption was false and thus the theorem is true.

Questions

Questions?

Structural Induction

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then n+1 is a natural number.

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If *n* is a natural number, then n+1 is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- □ is a binary tree (a leaf)
- If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with inner node \bigcirc).

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If *n* is a natural number, then n+1 is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- □ is a binary tree (a leaf)
- If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with inner node \bigcirc).

Implicit statement: all elements of the set can be constructed by finite application of these rules

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

- basic elements that are contained in M
- construction rules of the form
 "Given some elements of M, another element of M can be constructed like this."

German: Induktive Definition, Basiselemente, Konstruktionsregeln

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH): suppose that the statement is true for some elements M
- inductive step: proof of the statement for elements constructed by applying a construction rule to M(one inductive step for each construction rule)

German: Strukturelle Induktion, Induktionsanfang, Induktionsvoraussetzung, Induktionsschritt

Definition (Leaves of a Binary Tree)

The number of leaves of a binary tree B, written leaves B, is defined as follows:

$$\mathit{leaves}(\Box) = 1$$
 $\mathit{leaves}(\langle L, \bigcirc, R \rangle) = \mathit{leaves}(L) + \mathit{leaves}(R)$

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B), is defined as follows:

$$inner(\square) = 0$$

 $inner(\langle L, \bigcirc, R \rangle) = inner(L) + inner(R) + 1$

Theorem

For all binary trees B: inner(B) = leaves(B) - 1.

Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B) - 1.

Proof.

induction basis:

$$inner(\square) = 0 = 1 - 1 = leaves(\square) - 1$$

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree $\langle L, \bigcirc, R \rangle$, we may use that it is true for the subtrees L and R.

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree (L, \bigcirc, R) , we may use that it is true for the subtrees L and R.

inductive step for $B = \langle L, \bigcirc, R \rangle$:

$$inner(B) = inner(L) + inner(R) + 1$$

$$\stackrel{\mathsf{IH}}{=} (leaves(L) - 1) + (leaves(R) - 1) + 1$$

$$= leaves(L) + leaves(R) - 1 = leaves(B) - 1$$

Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree)

The height of a binary tree B, written height(B), is defined as follows:

$$height(\Box) = 0$$

 $height(\langle L, \bigcirc, R \rangle) = \max\{height(L), height(R)\} + 1$

Prove by structural induction:

$\mathsf{Theorem}$

For all binary trees B: leaves(B) $\leq 2^{height(B)}$.

Questions

Questions?

Summary

Summary

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement
- structural induction: generalization of mathematical induction to arbitrary recursive structures