Theory of Computer Science A3. Proof Techniques

Gabriele Röger

University of Basel

February 24, 2025

1 / 36

Proofs & Proof Strategies

A3. Proof Techniques

A3.1 Proofs & Proof Strategies

Proofs & Proof Strategies

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

The set of preconditions is sometimes empty.

German: Mathematische Aussage

5 / 36

Proofs & Proof Strategies

A3. Proof Techniques

On what Statements can we Build the Proof?

A mathematical proof is

- a sequence of logical steps
- starting with one set of statements
- that comes to the conlusion that some statement must be true.

We can use:

- axioms: statements that are assumed to always be true in the current context
- **b** theorems and lemmas: statements that were already proven
 - lemma: an intermediate tool
 - theorem: itself a relevant result
- premises: assumptions we make to see what consequences they have

German: Axiom, Theorem/Satz, Lemma, Prämisse/Annahme

A3. Proof Techniques

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ be a prime number with $p \ge 3$. Then p is odd."
- "All prime numbers $p \ge 3$ are odd."
- "If 4 is a prime number then $2 \cdot 3 = 4$.

What are the preconditions, what are the conclusions?

A3. Proof Techniques

What is a Logical Step?

A mathematical proof is

- ► a sequence of logical steps
- starting with one set of statements
- that comes to the conlusion that some statement must be true.

Each step directly follows

- from the axioms,
- premises,
- previously proven statements and
- the preconditions of the statement we want to prove.

For a formal definition, we would need formal logics.

6 / 36

Proofs & Proof Strategies

Proofs & Proof Strategies

Proofs & Proof Strategies

The Role of Definitions

Definition

A set is an unordered collection of distinct objects.

The objects in a set are called the elements of the set. A set is said to contain its elements.

We write $x \in S$ to indicate that x is an element of set S, and $x \notin S$ to indicate that S does not contain x.

The set that does not contain any objects is the *empty set* \emptyset .

- A definition introduces an abbreviation.
- Whenever we say "set", we could instead say "an unordered collection of distinct objects" and vice versa.
- Definitions can also introduce notation.

German: Definition

9 / 36

Proofs & Proof Strategies

A3. Proof Techniques

Exercise

You want to disprove the following statement with a counterexample:

If the sun is shining then all kids eat ice cream.

What properties must your counterexample have?

[Discuss with your neighbour; 2 minutes]

A3. Proof Techniques

Disproofs

- A disproof (refutation) shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.

Example (False statement)

"If $p \in \mathbb{N}_0$ is a prime number then p is odd."

Refutation.

Consider natural number 2 as a counter example. It is prime because it has exactly 2 divisors, 1 and itself. It is not odd, because it is divisible by 2.

German: Widerlegung

Proofs & Proof Strategies

10 / 36

A Word on Style

A3. Proof Techniques

A proof should help the reader to see why the result must be true.

- ► A proof should be easy to follow.
- Omit unnecessary information.
- Move self-contained parts into separate lemmas.
- ▶ In complicated proofs, reveal the overall structure in advance.
- Have a clear line of argument.
- \rightarrow Writing a proof is like writing an essay.

Proofs & Proof Strategies

Proofs & Proof Strategies

Proof Techniques

proof techniques we use in this course:

- direct proof
- indirect proof (proof by contradiction)
- structural induction

A3. Proof Techniques

A3.2 Direct Proof

17 / 36

Direct Proof

A3. Proof Techniques

Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

German: Direkter Beweis

A3. Proof Techniques

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ (\subseteq part):

Let $x \in A \cap (B \cup C)$. Then by the definition of \cap it holds that $x \in A$ and $x \in B \cup C$.

We make a case distinction between $x \in B$ and $x \notin B$:

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$, and we conclude $x \in (A \cap B) \cup (A \cap C)$.

. . .

A3. Proof Techniques

Direct Proof

. . .

21 / 36

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

 \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let
$$x \in (A \cap B) \cup (A \cap C)$$
.

We make a case distinction between $x \in A \cap B$ and $x \notin A \cap B$:

If
$$x \in A \cap B$$
 then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$. This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

In both cases we conclude $x \in A \cap (B \cup C)$.

A3. Proof Techniques Direct Proof: Example Theorem (distributivity) For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. Proof. Alternative: $A \cap (B \cup C) = \{x \mid x \in A \text{ and } x \in B \cup C\}$ $= \{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\}$ $= \{x \mid (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)\}$ $= \{x \mid x \in A \cap B \text{ or } x \in A \cap C\}$ $= (A \cap B) \cup (A \cap C)$ A3. Proof Techniques

Direct Proof: Example

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

We have shown that every element of $A \cap (B \cup C)$ is an element of $(A \cap B) \cup (A \cap C)$ and vice versa. Thus, both sets are equal.

22 / 36

A3. Proof Techniques Indirect Proof

Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Use the assumption to derive a contradiction.
- This shows that the assumption must be false and hence the original statement must be true.

German: Indirekter Beweis, Beweis durch Widerspruch

25 / 36

Structural Induction

A3. Proof Techniques

A3.4 Structural Induction

A3. Proof Techniques

Indirect Proof: Example

Theorem

Let A and B be sets. If $A \setminus B = \emptyset$ then $A \subseteq B$.

Proof.

We prove the theorem by contradiction. Assume that there are sets A and B with $A \setminus B = \emptyset$ and $A \not\subseteq B$. Let A and B be such sets. Since $A \not\subseteq B$ there is some $x \in A$ such that $x \notin B$. For this x it holds that $x \in A \setminus B$. This is a contradiction to $A \setminus B = \emptyset$. We conclude that the assumption was false and thus the theorem is true.

26 / 36

Indirect Proof

A3. Proof Techniques Structural Induction Inductively Defined Sets: Examples Example (Natural Numbers) The set \mathbb{N}_0 of natural numbers is inductively defined as follows: \bullet 0 is a natural number. \bullet 1 if *n* is a natural number, then *n* + 1 is a natural number. Example (Binary Tree) The set \mathcal{B} of binary trees is inductively defined as follows: $\bullet \square$ is a binary tree (a leaf) \bullet If *L* and *R* are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree

Implicit statement: all elements of the set can be constructed by finite application of these rules

(with inner node \bigcirc).

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

- **basic elements** that are contained in *M*
- construction rules of the form "Given some elements of *M*, another element of *M* can be constructed like this."

German: Induktive Definition, Basiselemente, Konstruktionsregeln

29 / 36

Structural Induction

A3. Proof Techniques

Structural Induction: Example (1)

Definition (Leaves of a Binary Tree) The number of leaves of a binary tree *B*, written *leaves*(*B*), is defined as follows:

 $leaves(\Box) = 1$ $leaves(\langle L, \bigcirc, R \rangle) = leaves(L) + leaves(R)$

Definition (Inner Nodes of a Binary Tree)

The number of inner nodes of a binary tree B, written inner(B), is defined as follows:

$$inner(\Box) = 0$$

 $inner(\langle L, \bigcirc, R \rangle) = inner(L) + inner(R) + 1$

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH):
 suppose that the statement is true for some elements M
- inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule)

German: Strukturelle Induktion, Induktionsanfang, Induktionsvoraussetzung, Induktionsschritt

30 / 36

Structural Induction

. . .

A3. Proof Techniques

Structural Induction: Example (2)

Theorem

For all binary trees B: inner(B) = leaves(B) - 1.

Proof.

induction basis: inner(\Box) = 0 = 1 - 1 = leaves(\Box) - 1 \rightsquigarrow statement is true for base case

A3. Proof Techniques

Structural Induction

Structural Induction: Example (3)

Proof (continued).

induction hypothesis:

to prove that the statement is true for a composite tree (L, \bigcirc, R) , we may use that it is true for the subtrees L and R.

```
inductive step for B = \langle L, \bigcirc, R \rangle:

inner(B) = inner(L) + inner(R) + 1
```

$$\stackrel{\mathsf{IH}}{=} (\mathit{leaves}(L) - 1) + (\mathit{leaves}(R) - 1) + 1$$
$$= \mathit{leaves}(L) + \mathit{leaves}(R) - 1 = \mathit{leaves}(B) - 1$$

33 / 36

Summarv

A3.5 Summary

A3. Proof Techniques

Structural Induction: Exercise (if time)

Definition (Height of a Binary Tree) The height of a binary tree *B*, written *height*(*B*), is defined as follows:

 $\begin{aligned} height(\Box) &= 0\\ height(\langle L, \bigcirc, R \rangle) &= \max\{height(L), height(R)\} + 1 \end{aligned}$

Prove by structural induction:

Theorem For all binary trees B: $leaves(B) \le 2^{height(B)}$.

Structural Induction

