Theory of Computer Science

A2. Mathematical Foundations

Gabriele Röger

University of Basel

February 19, 2025

set: unordered collection of distinguishable objects; each object contained at most once

- set: unordered collection of distinguishable objects; each object contained at most once
- notations:
 - **explicit**, listing all elements, e.g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots,
 - e.g. $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$

- set: unordered collection of distinguishable objects; each object contained at most once
- notations:
 - **explicit**, listing all elements, e.g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e.g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $e \in M$: e is in set M (an element of the set)
- $\bullet \notin M$: e is not in set M

- set: unordered collection of distinguishable objects; each object contained at most once
- notations:
 - **explicit**, listing all elements, e. g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e.g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e.g. $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- $e \in M$: e is in set M (an element of the set)
- $\bullet \notin M$: e is not in set M
- \blacksquare empty set $\emptyset = \{\}$

- set: unordered collection of distinguishable objects; each object contained at most once
- notations:
 - **explicit**, listing all elements, e. g. $A = \{1, 2, 3\}$
 - implicit, specifying a property characterizing all elements, e. g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \le x \le 3\}$
 - implicit, as a sequence with dots, e.g. $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$
- $e \in M$: e is in set M (an element of the set)
- $\bullet \notin M$: e is not in set M
- \blacksquare empty set $\emptyset = \{\}$
- **cardinality** |M| of a finite set M: number of elements in M

German: Menge, Element, leere Menge, Mächtigkeit/Kardinalität

- $A \subseteq B$: A is a subset of B, i. e., every element of A is an element of B
- $A \subset B$: A is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.

- $A \subseteq B$: A is a subset of B, i. e., every element of A is an element of B
- $A \subset B$: A is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.
- power set $\mathcal{P}(M)$: set of all subsets of M e. g., $\mathcal{P}(\{a,b\}) =$

- $A \subseteq B$: A is a subset of B, i. e., every element of A is an element of B
- $A \subset B$: A is a strict subset of B, i. e., $A \subseteq B$ and $A \neq B$.
- power set $\mathcal{P}(M)$: set of all subsets of M e. g., $\mathcal{P}(\{a,b\}) =$
- Cardinality of power set of finite set $S: |\mathcal{P}(S)| =$

■ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

Set Operations

■ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

■ union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

■ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

■ union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

■ difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

$$A \cap B$$

Set Operations

■ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

■ union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

$$A \bigcirc B$$

■ difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

■ complement $\overline{A} = B \setminus A$, where $A \subseteq B$ and B is the set of all considered objects (in a given context)

- *k*-tuple: ordered sequence of *k* objects
- written (o_1, \ldots, o_k) or $\langle o_1, \ldots, o_k \rangle$
- unlike sets, order matters $(\langle 1, 2 \rangle \neq \langle 2, 1 \rangle)$
- objects may occur multiple times in a tuple

- k-tuple: ordered sequence of k objects
- written (o_1, \ldots, o_k) or $\langle o_1, \ldots, o_k \rangle$
- unlike sets, order matters $(\langle 1, 2 \rangle \neq \langle 2, 1 \rangle)$
- objects may occur multiple times in a tuple
- objects contained in tuples are called components
- terminology:
 - k = 2: (ordered) pair
 - k = 3: triple
- if k is clear from context (or does not matter), often just called tuple

Cartesian Product

- for sets M_1, M_2, \ldots, M_n , the Cartesian product $M_1 \times \cdots \times M_n$ is the set $M_1 \times \cdots \times M_n = \{\langle o_1, \ldots, o_n \rangle \mid o_1 \in M_1, \ldots, o_n \in M_n \}.$
- Example: $M_1 = \{a, b, c\}, M_2 = \{1, 2\},$ $M_1 \times M_2 = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle\}$

Cartesian Product

```
• for sets M_1, M_2, \ldots, M_n, the Cartesian product M_1 \times \cdots \times M_n is the set M_1 \times \cdots \times M_n = \{\langle o_1, \ldots, o_n \rangle \mid o_1 \in M_1, \ldots, o_n \in M_n \}.
```

- Example: $M_1 = \{a, b, c\}, M_2 = \{1, 2\},$ $M_1 \times M_2 = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle\}$
- special case: $M^k = M \times \cdots \times M$ (k times)
- example with $M = \{1, 2\}$: $M^2 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$

Relations

- an *n*-ary relation *R* over the sets $M_1, ..., M_n$ is a subset of their Cartesian product: $R \subseteq M_1 \times \cdots \times M_n$.
- example with $M = \{1, 2\}$: $R \le M^2$ as $R \le \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle\}$

Definition (Total Function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

Definition (Total Function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

Example

• square : $\mathbb{Z} \to \mathbb{Z}$ with square $(x) = x^2$

Definition (Total Function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

Example

- square : $\mathbb{Z} \to \mathbb{Z}$ with square(x) = x^2
- $add: \mathbb{N}_0^2 \to \mathbb{N}_0$ with add(x,y) = x + y

Definition (Total Function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

Example

- square : $\mathbb{Z} \to \mathbb{Z}$ with square(x) = x^2
- $add: \mathbb{N}_0^2 \to \mathbb{N}_0$ with add(x, y) = x + y
- $lacksquare add_{\mathbb{R}}: \mathbb{R}^2 \to \mathbb{R} \text{ with } add_{\mathbb{R}}(x,y) = x+y$

Functions: Example

Example

Let
$$Q = \{q_0, q_1, q_2, q_{\text{accept}}, q_{\text{reject}}\}$$
 and $\Gamma = \{0, 1, \square\}$.

Define $\delta: (Q \setminus \{q_{\mathsf{accept}}, q_{\mathsf{reject}}\}) \times \Gamma \to Q \times \Gamma \times \{\mathsf{L}, \mathsf{R}\}$ by

$$\begin{array}{c|cccc} \delta & 0 & 1 & \square \\ \hline q_0 & \langle q_0,0,\mathsf{R}\rangle & \langle q_0,1,\mathsf{R}\rangle & \langle q_1,\square,\mathsf{L}\rangle \\ q_1 & \langle q_2,1,\mathsf{L}\rangle & \langle q_1,0,\mathsf{L}\rangle & \langle q_{\mathsf{reject}},1,\mathsf{L}\rangle \\ q_2 & \langle q_2,0,\mathsf{L}\rangle & \langle q_2,1,\mathsf{L}\rangle & \langle q_{\mathsf{accept}},\square,\mathsf{R}\rangle \\ \end{array}$$

Then, e.g.,
$$\delta(q_0,1) = \langle q_0,1,R \rangle$$

Partial Functions

Definition (Partial Function)

A partial function $f: X \to_p Y$ maps every value in X to at most one value in Y.

If f does not map $x \in X$ to any value in Y, then f is undefined for x.

German: partielle Funktion

Partial Functions

Definition (Partial Function)

A partial function $f: X \to_p Y$ maps every value in X to at most one value in Y.

If f does not map $x \in X$ to any value in Y, then f is undefined for x.

Example

 $f: \mathbb{N}_0 \times \mathbb{N}_0 \to_p \mathbb{N}_0$ with

$$f(x,y) = \begin{cases} x - y & \text{if } y \le x \\ \text{undefined} & \text{otherwise} \end{cases}$$

German: partielle Funktion

Summary

Summary

- sets: unordered, contain every element at most once
- tuples: ordered, can contain the same object multiple times
- Cartesian product: $M_1 \times \cdots \times M_n$ set of all *n*-tuples where the *i*-th component is in M_i
- function f: X → Y maps every value in X to exactly one value in Y
- partial function $g: X \rightarrow_p Y$ may be undefined for some values in X