Theory of Computer Science

A2. Mathematical Foundations

Gabriele Röger

University of Basel

February 19, 2025

1 / 15

Theory of Computer Science

February 19, 2025 — A2. Mathematical Foundations

A2.1 Sets, Tuples, Relations

A2.2 Functions

A2.3 Summary

2 / 15

A2. Mathematical Foundations Sets, Tuples, Relations

A2.1 Sets, Tuples, Relations

A2. Mathematical Foundations

Sets, Tuples, Relations

Sets

- set: unordered collection of distinguishable objects; each object contained at most once
- notations:
 - ightharpoonup explicit, listing all elements, e. g. $A = \{1, 2, 3\}$
 - ▶ implicit, specifying a property characterizing all elements, e.g. $A = \{x \mid x \in \mathbb{N} \text{ and } 1 \leq x \leq 3\}$
 - implicit, as a sequence with dots, e.g. $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
- $e \in M$: e is in set M (an element of the set)
- $ightharpoonup e \notin M$: e is not in set M
- ightharpoonup empty set $\emptyset = \{\}$
- ightharpoonup cardinality |M| of a finite set M: number of elements in M

German: Menge, Element, leere Menge, Mächtigkeit/Kardinalität

3 / 15

4 / 15

A2. Mathematical Foundations

Sets. Tuples. Relations

Sets

 \triangleright $A \subseteq B$: A is a subset of B, i. e., every element of A is an element of B

- \triangleright $A \subset B$: A is a strict subset of B. i. e., $A \subseteq B$ and $A \neq B$.
- **power set** $\mathcal{P}(M)$: set of all subsets of M e. g., $\mathcal{P}(\{a,b\}) =$
- ightharpoonup Cardinality of power set of finite set $S: |\mathcal{P}(S)| =$

German: Teilmenge, echte Teilmenge, Potenzmenge

5 / 15

7 / 15

Sets. Tuples. Relations

Tuples

A2. Mathematical Foundations

- \triangleright k-tuple: ordered sequence of k objects
- \blacktriangleright written (o_1,\ldots,o_k) or $\langle o_1,\ldots,o_k\rangle$
- ▶ unlike sets, order matters $(\langle 1, 2 \rangle \neq \langle 2, 1 \rangle)$
- objects may occur multiple times in a tuple
- objects contained in tuples are called components
- terminology:
 - k = 2: (ordered) pair
 - k = 3: triple
- if k is clear from context (or does not matter), often just called tuple

German: k-Tupel, Komponente, Paar, Tripel

A2. Mathematical Foundations

Sets. Tuples. Relations

Set Operations

▶ intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$

▶ union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

▶ difference $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

ightharpoonup complement $\overline{A} = B \setminus A$, where $A \subseteq B$ and B is the set of all considered objects (in a given context)

German: Schnitt, Vereinigung, Differenz, Komplement

6 / 15

A2. Mathematical Foundations

Sets. Tuples. Relations

Cartesian Product

 \blacktriangleright for sets M_1, M_2, \ldots, M_n , the Cartesian product $M_1 \times \cdots \times M_n$ is the set $M_1 \times \cdots \times M_n = \{\langle o_1, \dots, o_n \rangle \mid o_1 \in M_1, \dots, o_n \in M_n \}.$

 \blacktriangleright Example: $M_1 = \{a, b, c\}, M_2 = \{1, 2\},$ $M_1 \times M_2 = \{\langle a, 1 \rangle, \langle a, 2 \rangle, \langle b, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle, \langle c, 2 \rangle\}$

ightharpoonup special case: $M^k = M \times \cdots \times M$ (k times)

ightharpoonup example with $M = \{1, 2\}$: $M^2 = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$

German: kartesisches Produkt

A2. Mathematical Foundations

Sets. Tuples. Relations

Relations

- ▶ an *n*-ary relation *R* over the sets M_1, \ldots, M_n is a subset of their Cartesian product: $R \subseteq M_1 \times \cdots \times M_n$.
- ightharpoonup example with $M = \{1, 2\}$: $R \subseteq M^2$ as $R = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 2 \rangle\}$

German: (n-stellige) Relation

9 / 15

A2. Mathematical Foundations

A2.2 Functions

10 / 15

A2. Mathematical Foundations

Functions

Definition (Total Function)

A (total) function $f: D \to C$ (with sets D, C) maps every value of its domain D to exactly one value of its codomain C.

Example

- square: $\mathbb{Z} \to \mathbb{Z}$ with square(x) = x^2
- ▶ $add: \mathbb{N}_0^2 \to \mathbb{N}_0$ with add(x, y) = x + y
- ightharpoonup add_R: $\mathbb{R}^2 \to \mathbb{R}$ with add_R(x, y) = x + y

German: (totale) Funktion, Definitionsbereich, Wertebereich

A2. Mathematical Foundations

Functions: Example

Example

Let $Q = \{q_0, q_1, q_2, q_{\text{accept}}, q_{\text{reject}}\}$ and $\Gamma = \{0, 1, \square\}$.

Define $\delta: (Q \setminus \{q_{\mathsf{accept}}, q_{\mathsf{reject}}\}) \times \Gamma \to Q \times \Gamma \times \{\mathsf{L}, \mathsf{R}\}$ by

$$\begin{array}{c|cccc} \delta & 0 & 1 & \square \\ \hline q_0 & \langle q_0, 0, \mathsf{R} \rangle & \langle q_0, 1, \mathsf{R} \rangle & \langle q_1, \square, \mathsf{L} \rangle \\ q_1 & \langle q_2, 1, \mathsf{L} \rangle & \langle q_1, 0, \mathsf{L} \rangle & \langle q_{\mathsf{reject}}, 1, \mathsf{L} \rangle \\ q_2 & \langle q_2, 0, \mathsf{L} \rangle & \langle q_2, 1, \mathsf{L} \rangle & \langle q_{\mathsf{accept}}, \square, \mathsf{R} \rangle \end{array}$$

Then, e. g., $\delta(q_0, 1) = \langle q_0, 1, R \rangle$

12 / 15

A2. Mathematical Foundations

Functions

Partial Functions

Definition (Partial Function)

A partial function $f: X \rightarrow_p Y$ maps every value in X to at most one value in Y.

If f does not map $x \in X$ to any value in Y, then f is undefined for x.

Example

 $f: \mathbb{N}_0 \times \mathbb{N}_0 \rightarrow_p \mathbb{N}_0$ with

$$f(x,y) = \begin{cases} x - y & \text{if } y \le x \\ \text{undefined} & \text{otherwise} \end{cases}$$

German: partielle Funktion

13 / 15

A2. Mathematical Foundations

Summary

Summary

- sets: unordered, contain every element at most once
- ▶ tuples: ordered, can contain the same object multiple times
- ► Cartesian product: $M_1 \times \cdots \times M_n$ set of all *n*-tuples where the *i*-th component is in M_i
- ▶ function $f: X \to Y$ maps every value in X to exactly one value in Y
- ▶ partial function $g: X \rightarrow_p Y$ may be undefined for some values in X

15 / 15

A2. Mathematical Foundations Summary

A2.3 Summary

14 / 15