Foundations of Artificial Intelligence G4. Board Games: Stochastic Games

Malte Helmert

University of Basel

May 19, 2025

Expectiminimax 000

Board Games: Overview

chapter overview:

- G1. Introduction and State of the Art
- G2. Minimax Search and Evaluation Functions
- G3. Alpha-Beta Search
- G4. Stochastic Games
- G5. Monte-Carlo Tree Search Framework
- G6. Monte-Carlo Tree Search Variants

Stochastic Games

Expectiminimax 000

Summary 00

Expected Value

Expectiminimax 000

Discrete Random Variable

- a random event (like the result of a die roll)
 - is described in terms of a random variable X
 - with associated domain dom(X)
 - and a probability distribution over the domain
- if the number of outcomes of a random event is finite (like here), the random variable is a discrete random variable
- and the probability distribution is given as a probability P(X = x) that the outcome is $x \in \text{dom}(X)$

Expectiminimax 000

Summary 00

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks and can afford one share
- your analyst expects these stock price changes:

Bellman Inc. Markov Tec.

- +2 with 30% +4 with 20%
- +1 with 60% +2 with 30%
- ± 0 with 10% -1 with 50%

Expectiminimax 000

Summary 00

Discrete Random Variable: Example

informal description:

- you plan to invest in stocks and can afford one share
- your analyst expects these stock price changes:

Bellman Inc.	Markov Tec.
+2 with 30%	+4 with 20%
+1 with 60%	+2 with 30%
± 0 with 10%	-1 with 50%

formal model:

- discrete random variables B and M
- dom $(B) = \{2, 1, 0\}$ dom $(M) = \{4, 2, -1\}$
- P(B = 2) = 0.3 P(M = 4) = 0.2P(B = 1) = 0.6 P(M = 2) = 0.3P(B = 0) = 0.1 P(M = -1) = 0.5

Expectiminimax 000

Expected Value

- the expected value $\mathbb{E}[X]$ of a random variable X is a weighted average of its outcomes
- it is computed as the probability-weighted sum of all outcomes x ∈ dom(X), i.e.,

$$\mathbb{E}[X] = \sum_{x \in \operatorname{dom}(X)} P(X = x) \cdot x$$

 in stochastic environments, it is rational to deal with uncertainty by optimizing expected values

Expectiminimax 000

Summary 00

Expected Value: Example

formal model:

- discrete random variables *B* and *M*
- dom $(B) = \{2, 1, 0\}$ dom $(M) = \{4, 2, -1\}$

•
$$P(B = 2) = 0.3$$
 $P(M = 4) = 0.2$
 $P(B = 1) = 0.6$ $P(M = 2) = 0.3$
 $P(B = 0) = 0.1$ $P(M = -1) = 0.5$

Expectiminimax 000

Summary 00

Expected Value: Example

formal model:

- discrete random variables *B* and *M*
- dom $(B) = \{2, 1, 0\}$ dom $(M) = \{4, 2, -1\}$

expected gain:

$$\mathbb{E}[B] = P(B=2) \cdot 2 + P(B=1) \cdot 1 + P(B=0) \cdot 0$$

= 0.3 \cdot 2 + 0.6 \cdot 1 + 0.1 \cdot 0 = 1.2

$$\mathbb{E}[M] = P(M = 4) \cdot 4 + P(M = 2) \cdot 2 + P(M = -1) \cdot -1$$

= 0.2 \cdot 4 + 0.3 \cdot 2 + 0.5 \cdot -1 = 0.9

•
$$P(B = 2) = 0.3$$
 $P(M = 4) = 0.2$
 $P(B = 1) = 0.6$ $P(M = 2) = 0.3$
 $P(B = 0) = 0.1$ $P(M = -1) = 0.5$

Expectiminimax 000

Expected Value: Example

formal model:

- discrete random variables *B* and *M*
- dom(B) = $\{2, 1, 0\}$ dom(M) = $\{4, 2, -1\}$

expected gain:

$$\mathbb{E}[B] = P(B=2) \cdot 2 + P(B=1) \cdot 1 + P(B=0) \cdot 0$$

= 0.3 \cdot 2 + 0.6 \cdot 1 + 0.1 \cdot 0 = 1.2

$$\mathbb{E}[M] = P(M = 4) \cdot 4 + P(M = 2) \cdot 2 + P(M = -1) \cdot -1$$

= 0.2 \cdot 4 + 0.3 \cdot 2 + 0.5 \cdot -1 = 0.9

•
$$P(B = 2) = 0.3$$
 $P(M = 4) = 0.2$
 $P(B = 1) = 0.6$ $P(M = 2) = 0.3$
 $P(B = 0) = 0.1$ $P(M = -1) = 0.5$

rational decision: buy Bellman Inc.

Stochastic Games

Expectiminimax 000

Summary 00

Stochastic Games

Stochastic Games

Expectiminimax 000

Summary 00

Definition

Definition (stochastic game)

A stochastic game is a

7-tuple $\mathcal{S} = \langle S, A, T, s_{I}, S_{G}, \textit{utility}, \textit{player} \rangle$ with

- finite set of positions S
- finite set of moves A
- transition function T : S × A × S → [0, 1] that is well-defined for (s, a) (see below)
- initial position $s_{I} \in S$
- set of terminal positions $S_{\mathsf{G}} \subseteq S$
- utility function utility : $S_{\mathsf{G}} \to \mathbb{R}$
- player function player : $S \setminus S_G \rightarrow \{MAX, MIN\}$

A transition function is well-defined for $\langle s, a \rangle$ if $\sum_{s' \in S} T(s, a, s') = 1$ (then *a* is applicable in *s*) or $\sum_{s' \in S} T(s, a, s') = 0$.

Expectiminimax 000 Summary 00

Example: Stochastic Inc-and-Square Game

- As an example, we consider a variant of the bounded inc-and-square game from Chapter G1.
- The sqr move now acts stochastically:
 - It squares the current value v (mod 10) with probability $\frac{v}{10}$.
 - Otherwise it doubles the current value $v \pmod{10}$ (with prob. $1 \frac{v}{10}$).
- We also reduce the maximum game length to 3 moves (counting both players) to make the example smaller.
- Everything else stays the same.

Stochastic Games

Expectiminimax •00

Summary 00

Expectiminimax

Expectiminimax 000

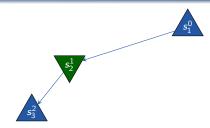
Summary 00

- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

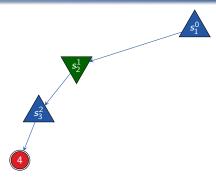


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

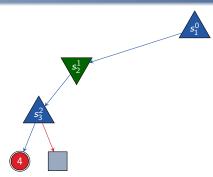


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

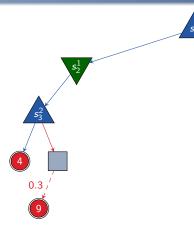


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

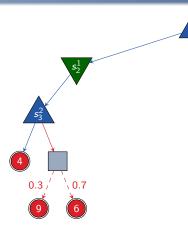


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

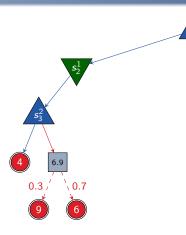


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

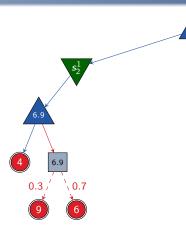


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

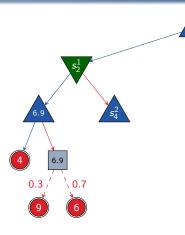


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

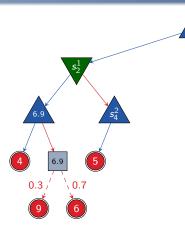


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

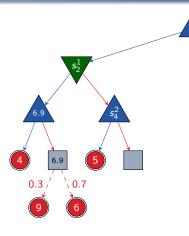


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

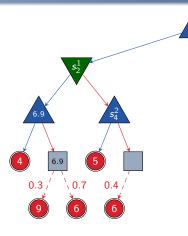


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

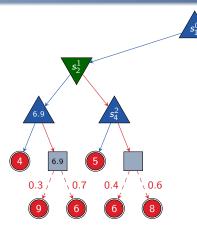


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

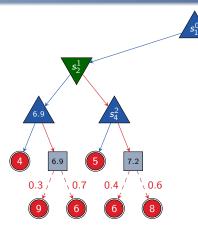


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

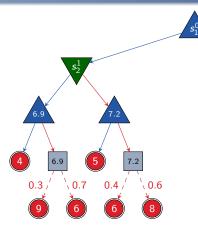


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

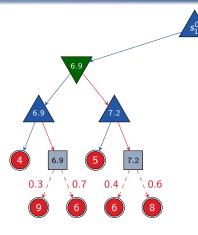


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

Summary 00

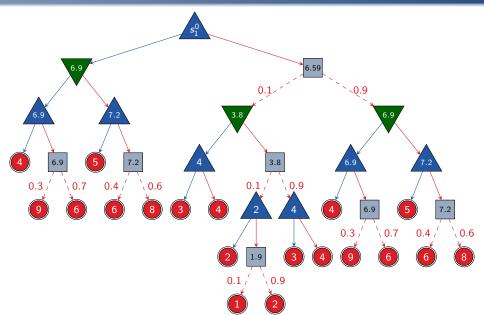


- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000

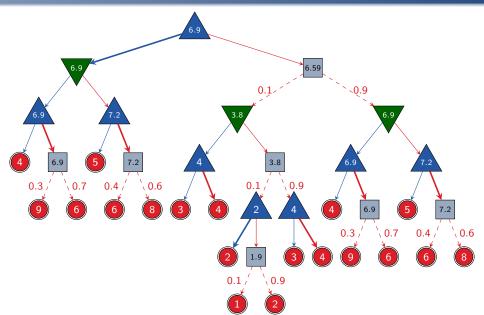
Summary 00



- depth-first search in game tree
- determine utility value of terminal positions with utility function
- compute utility value of inner nodes bottom-up through the tree:
 - MIN's turn: utility value is minimum of utility values of children
 - MAX's turn: utility value is maximum of utility values of children
 - chance: utility value is expected value of utility values of children
- policy for MAX: select action that leads to maximum utility value of children

Stochastic Games

Expectiminimax 000


Summary 00

Stochastic Games

Expectiminimax 000

Summary 00

Expectiminimax 000

Discussion

- expectiminimax is the simplest (decent) search algorithm for stochastic games
- yields optimal policy (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly)
- MAX obtains at least the utility value computed for the root in expectation, no matter how MIN plays
- if MIN plays perfectly, MAX obtains exactly the computed value in expectation

The same improvements as for minimax are possible (evaluation functions, alpha-beta search).

Stochastic Games

Expectiminimax

Summary •0

Summary

Summary

- Stochastic games are board games with an additional element of chance.
- Expectiminimax is a minimax variant for stochastic games with identical behavior in MAX and MIN nodes.
- In chance nodes, it propagates the expected value (probability-weighted sum) of all successors.
- Expectiminimax has same guarantees as minimax, but in expectation.