

Foundations of Art May 19, 2025 — G4. Board	ificial Intelligence Games: Stochastic Games		
G4.1 Expected V	/alue		
G4.2 Stochastic	Games		
G4.3 Expectimin	imax		
G4.4 Summary			
M. Helmert (University of Basel)	Foundations of Artificial Intelligence	May 19, 2025	2 / 20

G4.1 Expected Value

G4. Board Games: Stochastic Games

Expected Value

Foundations of Artificial Intelligence

Definition

Definition (stochastic game) A stochastic game is a 7-tuple $S = \langle S, A, T, s_{I}, S_{G}, utility, player \rangle$ with ► finite set of positions *S* finite set of moves A ▶ transition function $T : S \times A \times S \mapsto [0, 1]$ that is well-defined for $\langle s, a \rangle$ (see below) ▶ initial position $s_1 \in S$ ▶ set of terminal positions $S_G \subset S$ • utility function utility : $S_G \rightarrow \mathbb{R}$ ▶ player function player : $S \setminus S_G \rightarrow \{MAX, MIN\}$ A transition function is well-defined for (s, a) if $\sum_{s' \in S} T(s, a, s') = 1$ (then a is applicable in s) or $\sum_{s' \in S} T(s, a, s') = 0$. Foundations of Artificial Intelligence M. Helmert (University of Basel) May 19, 2025

G4. Board Games: Stochastic Games Expectiminimax G4.3 Expectiminimax

Foundations of Artificial Intelligence

13 / 20

4. Board Games: Stochastic Games		Expec	timinima
Discussion			
expectiminimax	x is the simplest (decent) searc	ch algorithm	
for stochastic g	games		
 yields optimal under the assur- 	policy (in the game-theoretic s mption that the opponent play	ense, i.e., vs perfectly)	
 MAX obtains a in expectation, 	<mark>it least</mark> the utility value compu no matter how MIN plays	ted for the root	
 if MIN plays po value in expect 	erfectly, MAX obtains <mark>exactly</mark> t cation	the computed	
The same improven (evaluation function	nents as for minimax are possil ns, alpha-beta search).	ble	
M. Helmert (University of Basel)	Foundations of Artificial Intelligence	May 19, 2025	18 /

M. Helmert (University of Basel)