
Foundations of Artificial Intelligence
G4. Board Games: Stochastic Games

Malte Helmert

University of Basel

May 19, 2025

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 19, 2025 1 / 20

Foundations of Artificial Intelligence
May 19, 2025 — G4. Board Games: Stochastic Games

G4.1 Expected Value

G4.2 Stochastic Games

G4.3 Expectiminimax

G4.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 19, 2025 2 / 20

Board Games: Overview

chapter overview:

▶ G1. Introduction and State of the Art

▶ G2. Minimax Search and Evaluation Functions

▶ G3. Alpha-Beta Search

▶ G4. Stochastic Games

▶ G5. Monte-Carlo Tree Search Framework

▶ G6. Monte-Carlo Tree Search Variants
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G4.1 Expected Value
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G4. Board Games: Stochastic Games Expected Value

Discrete Random Variable

▶ a random event (like the result of a die roll)
▶ is described in terms of a random variable X
▶ with associated domain dom(X )
▶ and a probability distribution over the domain

▶ if the number of outcomes of a random event is finite
(like here), the random variable is a discrete random variable

▶ and the probability distribution is given as a probability
P(X = x) that the outcome is x ∈ dom(X )
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Discrete Random Variable: Example

informal description:

▶ you plan to invest in stocks
and can afford one share

▶ your analyst expects these
stock price changes:

Bellman Inc.
+2 with 30%
+1 with 60%
±0 with 10%

Markov Tec.
+4 with 20%
+2 with 30%
−1 with 50%

formal model:

▶ discrete random variables B and M

▶ dom(B) = {2, 1, 0}
dom(M) = {4, 2,−1}

▶ P(B = 2) = 0.3
P(B = 1) = 0.6
P(B = 0) = 0.1

P(M = 4) = 0.2
P(M = 2) = 0.3
P(M = −1) = 0.5
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Expected Value

▶ the expected value E[X ] of a random variable X
is a weighted average of its outcomes

▶ it is computed as the probability-weighted sum
of all outcomes x ∈ dom(X ), i.e.,

E[X ] =
∑

x∈dom(X )

P(X = x) · x

▶ in stochastic environments, it is rational to deal
with uncertainty by optimizing expected values
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Expected Value: Example

formal model:
▶ discrete random variables

B and M

▶ dom(B) = {2, 1, 0}
dom(M) = {4, 2,−1}

▶ P(B = 2) = 0.3
P(B = 1) = 0.6
P(B = 0) = 0.1

P(M = 4) = 0.2
P(M = 2) = 0.3
P(M = −1) = 0.5

expected gain:
E[B] = P(B = 2) · 2 + P(B = 1) · 1 + P(B = 0) · 0

= 0.3 · 2 + 0.6 · 1 + 0.1 · 0 = 1.2

E[M] = P(M = 4)·4+P(M = 2)·2+P(M = −1)·−1
= 0.2 · 4 + 0.3 · 2 + 0.5 · −1 = 0.9

rational decision: buy Bellman Inc.
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G4.2 Stochastic Games
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Definition

Definition (stochastic game)

A stochastic game is a
7-tuple S = ⟨S ,A,T , sI,SG, utility, player⟩ with
▶ finite set of positions S

▶ finite set of moves A

▶ transition function T : S × A× S 7→ [0, 1] that is
well-defined for ⟨s, a⟩ (see below)

▶ initial position sI ∈ S

▶ set of terminal positions SG ⊆ S

▶ utility function utility : SG → R
▶ player function player : S \ SG → {MAX,MIN}

A transition function is well-defined for ⟨s, a⟩ if
∑

s′∈S T (s, a, s ′) = 1

(then a is applicable in s) or
∑

s′∈S T (s, a, s ′) = 0.
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Example: Stochastic Inc-and-Square Game

▶ As an example, we consider a variant of the bounded
inc-and-square game from Chapter G1.

▶ The sqr move now acts stochastically:
▶ It squares the current value v (mod 10) with probability v

10 .
▶ Otherwise it doubles the current value v (mod 10)

(with prob. 1− v
10 ).

▶ We also reduce the maximum game length to 3 moves
(counting both players) to make the example smaller.

▶ Everything else stays the same.
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G4.3 Expectiminimax
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G4. Board Games: Stochastic Games Expectiminimax

Idea and Example

▶ depth-first search in game tree

▶ determine utility value of terminal
positions with utility function

▶ compute utility value of inner nodes

bottom-up through the tree:

▶ MIN’s turn: utility value is
minimum of utility values of children

▶ MAX’s turn: utility value is
maximum of utility values of children

▶ chance: utility value is expected
value of utility values of children

▶ policy for MAX: select action that leads to
maximum utility value of children
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Discussion

▶ expectiminimax is the simplest (decent) search algorithm
for stochastic games

▶ yields optimal policy (in the game-theoretic sense, i.e.,
under the assumption that the opponent plays perfectly)

▶ MAX obtains at least the utility value computed for the root
in expectation, no matter how MIN plays

▶ if MIN plays perfectly, MAX obtains exactly the computed
value in expectation

The same improvements as for minimax are possible
(evaluation functions, alpha-beta search).
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G4.4 Summary
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G4. Board Games: Stochastic Games Summary

Summary

▶ Stochastic games are board games
with an additional element of chance.

▶ Expectiminimax is a minimax variant for stochastic games
with identical behavior in MAX and MIN nodes.

▶ In chance nodes, it propagates the expected value
(probability-weighted sum) of all successors.

▶ Expectiminimax has same guarantees as minimax,
but in expectation.
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