Foundations of Artificial Intelligence F6. Automated Planning: Abstraction Heuristics

Malte Helmert

University of Basel

May 7, 2025

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 7, 2025 1 / 20

Foundations of Artificial Intelligence May 7, 2025 — F6. Automated Planning: Abstraction Heuristics

F6.1 Abstraction Heuristics

F6.2 Pattern Databases

F6.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Automated Planning: Overview

Chapter overview: automated planning

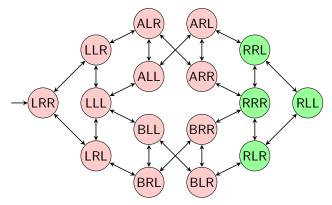
- F1. Introduction
- ► F2. Planning Formalisms
- ► F3. Delete Relaxation
- ► F4. Delete Relaxation Heuristics
- ► F5. Abstraction
- ► F6. Abstraction Heuristics

F6.1 Abstraction Heuristics

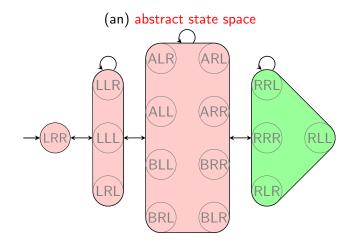
Abstraction Heuristic

Given an abstraction function α for a state space S, use abstract solution cost (solution cost of $\alpha(s)$ in S^{α}) as heuristic for concrete solution cost (solution cost of s in S).

Definition (abstraction heuristic) The abstraction heuristic for abstraction α maps each state s to its abstract solution cost

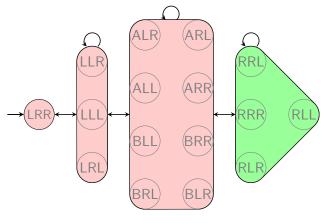

 $h^{\alpha}(s) = h^*_{\mathcal{S}^{\alpha}}(\alpha(s)),$

where $h^*_{\mathcal{S}^{\alpha}}$ is the perfect heuristic in \mathcal{S}^{α} .


German: abstrakte/konkrete Zielabstände, Abstraktionsheuristik

Abstraction: Example

Abstraction: Example



Remark: Most arcs correspond to several (parallel) transitions with different labels.

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Abstraction Heuristic: Example

 $h^{\alpha}(\{p \mapsto \mathsf{L}, t_{\mathsf{A}} \mapsto \mathsf{R}, t_{\mathsf{B}} \mapsto \mathsf{R}\}) = 3$

F6. Automated Planning: Abstraction Heuristics

Abstraction Heuristics: Discussion

- Every abstraction heuristic is admissible and consistent. (proof idea?)
- The choice of the abstraction function α is very important.
 - Every α yields an admissible and consistent heuristic.
 - But most α lead to poor heuristics.
- An effective α must yield an informative heuristic ...
- ... as well as being efficiently computable.
- How to find a suitable α ?

Automatic Computation of Suitable Abstractions

Main Problem with Abstraction Heuristics How to find a good abstraction?

Several successful methods:

- ▶ pattern databases (PDBs) ~→ this course (Culberson & Schaeffer, 1996)
- merge-and-shrink abstractions (Dräger, Finkbeiner & Podelski, 2006)
- Cartesian abstractions (Seipp & Helmert, 2013)
- domain abstractions (Kreft et al., 2023)

German: Pattern Databases, Merge-and-Shrink-Abstraktionen, Kartesische Abstraktionen, Domänenabstraktionen

F6.2 Pattern Databases

Pattern Databases: Background

- The most common abstraction heuristics are pattern database heuristics.
- originally introduced for the 15-puzzle (Culberson & Schaeffer, 1996) and for Rubik's Cube (Korf, 1997)
- introduced for automated planning by Edelkamp (2001)
- for many search problems the best known heuristics
- many many research papers studying
 - theoretical properties
 - efficient implementation and application
 - pattern selection

▶ ...

Pattern Databases: Projections

A PDB heuristic for a planning task is an abstraction heuristic where

- some aspects (= state variables) of the task are preserved with perfect precision while
- all other aspects are not preserved at all.

formalized as projections to a pattern $P \subseteq V$:

$$\pi_P(s) = \{ v \mapsto s(v) \mid v \in P \}$$

example:

►
$$s = \{p \mapsto L, t_A \mapsto R, t_B \mapsto R\}$$

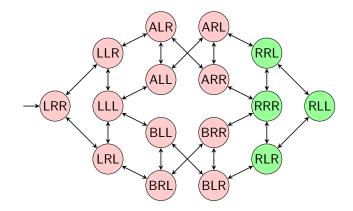
- ▶ projection on $P = \{p\}$ (= ignore trucks): $\pi_P(s) = \{p \mapsto L\}$
- ▶ projection on $P = \{p, t_A\}$ (= ignore truck B): $\pi_P(s) = \{p \mapsto L, t_A \mapsto R\}$

German: Projektionen

Pattern Databases: Definition

Definition (pattern database heuristic)

Let P be a subset of the variables of a planning task.

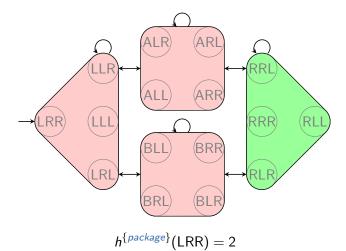

The abstraction heuristic induced by the projection π_P on P is called pattern database heuristic (PDB heuristic) with pattern P. abbreviated notation: h^P for h^{π_P}

German: Pattern-Database-Heuristik

remark:

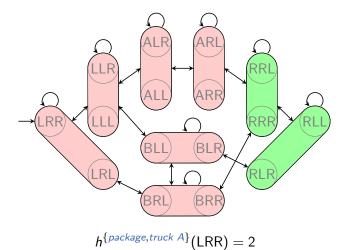
 "pattern databases" in analogy to endgame databases (which have been successfully applied in 2-person-games)

Example: Concrete State Space



- state variable package: {L, R, A, B}
- state variable truck A: {L, R}
- state variable truck B: {L, R}

F6. Automated Planning: Abstraction Heuristics


Example: Projection (1)

abstraction induced by $\pi_{\{package\}}$:

Example: Projection (2)

abstraction induced by $\pi_{\{package, truck A\}}$:

Pattern Databases in Practice

practical aspects which we do not discuss in detail:

- How to automatically find good patterns?
- How to combine multiple PDB heuristics?
- How to implement PDB heuristics efficiently?
 - good implementations efficiently handle abstract state spaces with 10⁷, 10⁸ or more abstract states
 - effort independent of the size of the concrete state space

F6.3 Summary

Summary

- basic idea of abstraction heuristics: estimate solution cost by considering a smaller planning task.
- formally: abstraction function α maps states to abstract states and thus defines which states can be distinguished by the resulting heuristic.
- induces abstract state space whose solution costs are used as heuristic
- Pattern database heuristics are abstraction heuristics based on projections onto state variable subsets (patterns): states are distinguishable iff they differ on the pattern.