Foundations of Artificial Intelligence F5. Automated Planning: Abstraction

Malte Helmert

University of Basel

May 7, 2025

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 7, 2025 1 / 16

Foundations of Artificial Intelligence May 7, 2025 — F5. Automated Planning: Abstraction

F5.1 SAS⁺

F5.2 Abstractions

F5.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Automated Planning: Overview

Chapter overview: automated planning

- F1. Introduction
- ► F2. Planning Formalisms
- ► F3. Delete Relaxation
- ► F4. Delete Relaxation Heuristics
- ► F5. Abstraction
- ► F6. Abstraction Heuristics

We consider two basic ideas for general heuristics:

- Delete Relaxation
- Abstraction ~> this chapter

Abstraction: Idea Estimate solution costs by considering a smaller planning task.

F5.1 SAS⁺

SAS⁺ Encoding

- in this chapter: SAS⁺ encoding instead of STRIPS (see Chapter F2)
- difference: state variables v not binary, but with finite domain dom(v)
- accordingly, preconditions, effects, goals specified as partial assignments
- everything else equal to STRIPS

(In practice, planning systems convert automatically between STRIPS and SAS^+ .)

SAS⁺ Planning Task

Definition (SAS⁺ planning task)

A SAS⁺ planning task is a 5-tuple $\Pi = \langle V, \text{dom}, I, G, A \rangle$ with the following components:

- V: finite set of state variables
- dom: domain; dom(v) finite and non-empty for all $v \in V$

states: total assignments for V according to dom

- I: the initial state (state = total assignment)
- ► G: goals (partial assignment)
- A: finite set of actions a with
 - pre(a): its preconditions (partial assignment)
 - eff(a): its effects (partial assignment)
 - $cost(a) \in \mathbb{N}_0$: its cost

German: SAS⁺-Planungsaufgabe

State Space of SAS⁺ Planning Task

Definition (state space induced by SAS⁺ planning task) Let $\Pi = \langle V, \text{dom}, I, G, A \rangle$ be a SAS⁺ planning task. Then Π induces the state space $S(\Pi) = \langle S, A, cost, T, s_{I}, S_{G} \rangle$: set of states: total assignments of V according to dom actions: actions A defined as in Π \blacktriangleright action costs: cost as defined in \Box **•** transitions: $s \xrightarrow{a} s'$ for states s, s' and action a iff pre(a) agrees with s (precondition satisfied) \blacktriangleright s' agrees with eff(a) for all variables mentioned in eff; agrees with *s* for all other variables (effects are applied) \blacktriangleright initial state: $s_{l} = I$ **b** goal states: $s \in S_G$ for state s iff G agrees with s

German: durch SAS⁺-Planungsaufgabe induzierter Zustandsraum

Example: Logistics Task with One Package, Two Trucks

Example (one package, two trucks) Consider the SAS⁺ planning task $\langle V, \text{dom}, I, G, A \rangle$ with: $V = \{p, t_A, t_B\}$ • dom $(p) = \{L, R, A, B\}$ and dom $(t_A) = dom(t_B) = \{L, R\}$ \blacktriangleright $I = \{p \mapsto L, t_A \mapsto R, t_B \mapsto R\}$ • $G = \{p \mapsto R\}$ ▶ $A = \{load_{i,i} \mid i \in \{A, B\}, j \in \{L, R\}\}$ \cup {*unload*_{*i*,*i*} | *i* \in {A, B}, *j* \in {L, R}} \cup {*move*_{*i*,*i*,*i*} | *i* \in {A, B}, *j*, *j*' \in {L, R}, *j* \neq *j*'} with: • *load*_{*i*,*j*} has preconditions $\{t_i \mapsto j, p \mapsto j\}$, effects $\{p \mapsto i\}$ • *unload*_{*i*,*i*} has preconditions $\{t_i \mapsto j, p \mapsto i\}$, effects $\{p \mapsto j\}$ • move_{*i*,*i*,*i'*} has preconditions $\{t_i \mapsto j\}$, effects $\{t_i \mapsto j'\}$ All actions have cost 1.

State Space for Example Task

- ▶ state $\{p \mapsto i, t_A \mapsto j, t_B \mapsto k\}$ denoted as *ijk*
- annotations of edges not shown for simplicity
- ▶ for example, edge from LLL to ALL has annotation *load*_{A,L}

F5.2 Abstractions

State Space Abstraction

State space abstractions drop distinctions between certain states, but preserve the state space behavior as well as possible.

- An abstraction of a state space S is defined by an abstraction function α that determines which states can be distinguished in the abstraction.
- Based on S and α, we compute the abstract state space S^α which is "similar" to S but smaller.
- main idea: use optimal solution cost in S^{α} as heuristic German: Abstraktionsfunktion, abstrakter Zustandsraum

Induced Abstraction

Definition (induced abstraction) Let $S = \langle S, A, cost, T, s_I, S_G \rangle$ be a state space, and let $\alpha : S \to S'$ be a surjective function. The abstraction of S induced by α , denoted as S^{α} , is the state space $S^{\alpha} = \langle S', A, cost, T', s'_I, S'_G \rangle$ with: $T' = \{ \langle \alpha(s), a, \alpha(t) \rangle \mid \langle s, a, t \rangle \in T \}$ $s'_I = \alpha(s_I)$ $S'_G = \{ \alpha(s) \mid s \in S_G \}$

German: induzierte Abstraktion

M. Helmert (University of Basel)

Abstraction: Example

concrete state space with states $S = \{A, B, C, D, E, F\}$

abstraction function $\alpha: \mathcal{S} \rightarrow \mathcal{S}^{\alpha}$

 $\alpha(A) = W \quad \alpha(B) = X \quad \alpha(C) = Y$ $\alpha(D) = Z \quad \alpha(E) = Z \quad \alpha(F) = Y$ abstract state space with states $S^{\alpha} = \{W, X, Y, Z\}$

intuition: grouping states

F5.3 Summary

Summary

- basic idea of abstractions: simplify state space by considering a smaller version
- formally: abstraction function α maps states to abstract states and thus defines which states can be distinguished by the resulting abstraction
- induces abstract state space