Foundations of Artificial Intelligence F4. Automated Planning: Delete Relaxation Heuristics

Malte Helmert

University of Basel

May 5, 2025

Foundations of Artificial Intelligence

May 5, 2025 — F4. Automated Planning: Delete Relaxation Heuristics

F4.1 Relaxed Planning Graphs

F4.2 Maximum and Additive Heuristics

F4.3 FF Heuristic

F4.4 Summary

Automated Planning: Overview

Chapter overview: automated planning

- ► F1. Introduction
- ► F2. Planning Formalisms
- ► F3. Delete Relaxation
- ► F4. Delete Relaxation Heuristics
- ► F5. Abstraction
- ► F6. Abstraction Heuristics

F4.1 Relaxed Planning Graphs

Relaxed Planning Graphs

- relaxed planning graphs: represent which variables in Π⁺ can be reached and how
- ightharpoonup graphs with variable layers V^i and action layers A^i
 - ightharpoonup variable layer V^0 contains the variable vertex v^0 for all $v \in I$
 - ▶ action layer A^{i+1} contains the action vertex a^{i+1} for action a if V^i contains the vertex v^i for all $v \in pre(a)$
 - variable layer V^{i+1} contains the variable vertex v^{i+1} if previous variable layer contains v^i , or previous action layer contains a^{i+1} with $v \in add(a)$

German: relaxierter Planungsgraph, Variablenknoten, Aktionsknoten

Relaxed Planning Graphs (Continued)

- ▶ a goal vertex g if $v^n \in V^n$ for all $v \in G$, where n is last layer
- ▶ graph can be constructed for arbitrary many layers but stabilizes after a bounded number of layers $\rightsquigarrow V^{i+1} = V^i$ and $A^{i+1} = A^i$ (Why?)
- directed edges:
 - from v^i to a^{i+1} if $v \in pre(a)$ (precondition edges)
 - from a^i to v^i if $v \in add(a)$ (effect edges)
 - ightharpoonup from v^i to v^{i+1} (no-op edges)
 - ▶ from v^n to g if $v \in G$ (goal edges)

German: Zielknoten, Vorbedingungskanten, Effektkanten, Zielkanten, No-Op-Kanten

Illustrative Example

We write actions a with
$$pre(a) = \{p_1, ..., p_k\}$$
, $add(a) = \{q_1, ..., q_l\}$, $del(a) = \emptyset$ and $cost(a) = c$ as $p_1, ..., p_k \stackrel{c}{\rightarrow} q_1, ..., q_l$

$$V = \{m, n, o, p, q, r, s, t\}$$

$$I = \{m\}$$

$$G = \{o, p, q, r, s\}$$

$$A = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

$$a_1 = m \xrightarrow{3} n, o$$

$$a_2 = m, o \xrightarrow{1} p$$

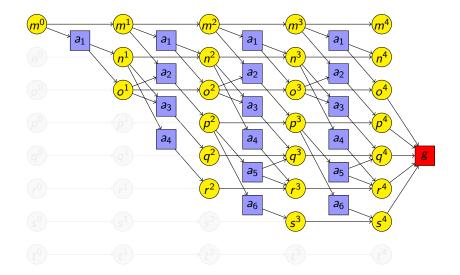
$$a_3 = n, o \xrightarrow{1} q$$

$$a_4 = n \xrightarrow{1} r$$

$$a_5 = p \xrightarrow{1} q, r$$

$$a_6 = p \xrightarrow{1} s$$

Illustrative Example: Relaxed Planning Graph



Generic Relaxed Planning Graph Heuristic

```
Heuristic Values from Relaxed Planning Graph
function generic-rpg-heuristic(\langle V, I, G, A \rangle, s):
     \Pi^+ := \langle V, s, G, A^+ \rangle
     for k \in \{0, 1, 2, \dots\}:
           rpg := RPG_k(\Pi^+) [relaxed planning graph to layer k]
           if rpg contains a goal node:
                Annotate nodes of rpg.
                if termination criterion is true:
                     return heuristic value from annotations
           else if graph has stabilized:
                return \infty
```

- → general template for RPG heuristics
- → to obtain concrete heuristic: instantiate highlighted elements

Concrete Examples for Generic RPG Heuristic

Many planning heuristics fit this general template.

In this course:

- maximum heuristic h^{max} (Bonet & Geffner, 1999)
- ▶ additive heuristic h^{add} (Bonet, Loerincs & Geffner, 1997)
- Keyder & Geffner's (2008) variant of the FF heuristic h^{FF} (Hoffmann & Nebel, 2001)

German: Maximum-Heuristik, additive Heuristik, FF-Heuristik

remark:

► The most efficient implementations of these heuristics do not use explicit planning graphs, but rather alternative (equivalent) definitions.

F4.2 Maximum and Additive Heuristics

Maximum and Additive Heuristics

- \blacktriangleright h^{max} and h^{add} are the simplest RPG heuristics.
- Vertex annotations are numerical values.
- The vertex values estimate the costs
 - to make a given variable true
 - to reach and apply a given action
 - to reach the goal

Maximum and Additive Heuristics: Filled-in Template

h^{max} and h^{add}

computation of annotations:

- costs of variable vertices:0 in layer 0;otherwise minimum of the costs of predecessor vertices
- costs of action and goal vertices: maximum (h^{max}) or sum (h^{add}) of predecessor vertex costs; for action vertices aⁱ, also add cost(a)

termination criterion:

stability: terminate if $V^i = V^{i-1}$ and costs of all vertices in V^i equal corresponding vertex costs in V^{i-1}

heuristic value:

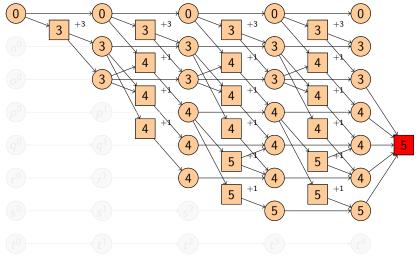
value of goal vertex

Maximum and Additive Heuristics: Intuition

intuition:

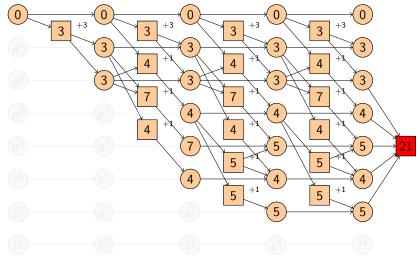
- variable vertices:
 - choose cheapest way of reaching the variable
- ► action/goal vertices:
 - h^{max} is optimistic: assumption: when reaching the most expensive precondition variable, we can reach the other precondition variables in parallel (hence maximization of costs)
 - h^{add} is pessimistic: assumption: all precondition variables must be reached completely independently of each other (hence summation of costs)

Illustrative Example: h^{max}



 $h^{\max}(\{m\})=5$

Illustrative Example: h^{add}



 $h^{\mathrm{add}}(\{m\}) = 21$

h^{max} and h^{add} : Remarks

comparison of h^{max} and h^{add} :

- both are safe and goal-aware
- $ightharpoonup h^{\text{max}}$ is admissible and consistent; h^{add} is neither.
- \rightarrow h^{add} not suited for optimal planning
- ► However, h^{add} is usually much more informative than h^{max} . Greedy best-first search with h^{add} is a decent algorithm.
- ▶ Apart from not being admissible, h^{add} often vastly overestimates the actual costs because positive synergies between subgoals are not recognized.
- → FF heuristic

F4.3 FF Heuristic

FF Heuristic

The FF Heuristic

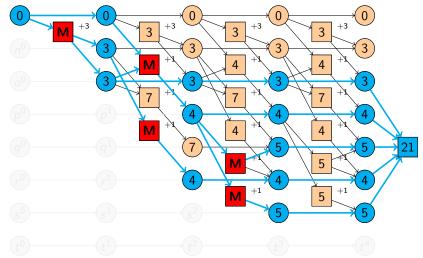
identical to h^{add} , but additional steps at the end:

- ► Mark goal vertex.
- Apply the following marking rules until nothing more to do:
 - marked action or goal vertex?
 - → mark all predecessors
 - - (tie-breaking: prefer variable vertices; otherwise arbitrary)

heuristic value:

- ► The actions corresponding to the marked action vertices build a relaxed plan.
- ► The cost of this plan is the heuristic value.

Illustrative Example: hFF



$$h^{\mathsf{FF}}(\{m\}) = 3 + 1 + 1 + 1 + 1 = 7$$

FF Heuristic: Remarks

- ▶ Like h^{add}, h^{FF} is safe and goal-aware, but neither admissible nor consistent.
- \triangleright approximation of h^+ which is always at least as good as h^{add}
- usually significantly better
- can be computed in almost linear time (O(n log n)) in the size of the description of the planning task
- computation of heuristic value depends on tie-breaking of marking rules (h^{FF} not well-defined)
- ▶ one of the most successful planning heuristics

Comparison of Relaxation Heuristics

Relationships of Relaxation Heuristics

Let s be a state in the STRIPS planning task $\langle V, I, G, A \rangle$.

Then

- $h^{\max}(s) \le h^+(s) \le h^*(s)$
- $h^{\max}(s) \le h^+(s) \le h^{\mathsf{FF}}(s) \le h^{\mathsf{add}}(s)$
- \blacktriangleright h^* and h^{FF} are incomparable
- \blacktriangleright h^* and h^{add} are incomparable

further remarks:

- For non-admissible heuristics, it is generally neither good nor bad to compute higher values than another heuristic.
- ▶ For relaxation heuristics, the objective is to approximate h^+ as closely as possible.

F4.4 Summary

Summary

- Many delete relaxation heuristics can be viewed as computations on relaxed planning graphs (RPGs).
- examples: h^{max}, h^{add}, h^{FF}
- \blacktriangleright h^{max} and h^{add} propagate numeric values in the RPGs
 - difference: h^{max} computes the maximum of predecessor costs for action and goal vertices; h^{add} computes the sum
- h^{FF} marks vertices and sums the costs of marked action vertices.
- generally: $h^{\max}(s) \le h^+(s) \le h^{\mathsf{FF}}(s) \le h^{\mathsf{add}}(s)$