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Reasoning: Intuition

Reasoning: Intuition

Generally, formulas only represent
an incomplete description of the world.

In many cases, we want to know
if a formula logically follows from (a set of) other formulas.

What does this mean?
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Reasoning: Intuition

example: φ = (P ∨ Q) ∧ (R ∨ ¬P) ∧ S

S holds in every model of φ.
What about P, Q and R?

⇝ consider all models of φ:

I1 = {P 7→ F,Q 7→ T,R 7→ F,S 7→ T}
I2 = {P 7→ F,Q 7→ T,R 7→ T,S 7→ T}
I3 = {P 7→ T,Q 7→ F,R 7→ T,S 7→ T}
I4 = {P 7→ T,Q 7→ T,R 7→ T,S 7→ T}

Observation

In all models of φ, the formula Q ∨ R holds as well.

We say: “Q ∨ R logically follows from φ.”
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Reasoning: Formally

Definition (logical consequence)

Let Φ be a set of formulas. A formula ψ logically follows from Φ
(in symbols: Φ |= ψ) if all models of Φ are also models of ψ.

German: logische Konsequenz, folgt logisch

In other words: for each interpretation I ,
if I |= φ for all φ ∈ Φ, then also I |= ψ.

Question

How can we automatically compute if Φ |= ψ?

One possibility: Build a truth table. (How?)

Are there “better” possibilities that (potentially) avoid
generating the whole truth table?
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Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of formulas and let ψ be a formula. Then

Φ |= ψ iff (
∧
φ∈Φ

φ) → ψ is a tautology.

German: Deduktionssatz

Proof.

iff

Φ |= ψ
iff for each interpretation I : if I |= φ for all φ ∈ Φ, then I |= ψ
iff for each interpretation I : if I |=

∧
φ∈Φ φ, then I |= ψ

iff for each interpretation I : I ̸|=
∧

φ∈Φ φ or I |= ψ
iff for each interpretation I : I |= (

∧
φ∈Φ φ) → ψ

iff (
∧

φ∈Φ φ) → ψ is tautology
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Reasoning by Unsatisfiability Testing

Consequence of Deduction Theorem

Reasoning can be reduced to testing unsatisfiability.

Question: Does Φ |= ψ hold?

Idea:

Let χ = (
∧

φ∈Φ φ) → ψ.

We know that Φ |= ψ iff χ is a tautology.

A formula is a tautology iff its negation is unsatisfiable.

Hence, Φ |= ψ iff ¬χ is unsatisfiable.

Use equivalences:
¬χ = ¬((

∧
φ∈Φ φ) → ψ) ≡ ¬(¬(

∧
φ∈Φ φ) ∨ ψ)

≡ (¬¬(
∧

φ∈Φ φ) ∧ ¬ψ) ≡
∧

φ∈Φ φ ∧ ¬ψ
We have that Φ |= ψ iff

∧
φ∈Φ φ ∧ ¬ψ is unsatisfiable.
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Algorithm for Reasoning

Question: Does Φ |= ψ hold?

Algorithm (given an algorithm for testing unsatisfiability):

1 Let η =
∧

φ∈Φ φ ∧ ¬ψ.
2 Test if η is unsatisfiable.

3 If yes, return “Φ |= ψ”.

4 Otherwise, return “Φ ̸|= ψ”.

In the following: Can we test unsatisfiability in a more efficient way
than by computing the whole truth table?
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Sets of Clauses

for the rest of this chapter:

prerequisite: formulas in conjunctive normal form

clause represented as a set C of literals

formula represented as a set ∆ of clauses

Example

Let φ = (P ∨ Q) ∧ ¬P.
φ in conjunctive normal form

φ consists of clauses (P ∨ Q) and ¬P
representation of φ as set of sets of literals: {{P,Q}, {¬P}}



Reasoning Resolution Summary

Sets of Clauses (Corner Cases)

Distinguish ⊥ (empty clause = empty set of literals)
vs. ∅ (empty set of clauses).

C = ⊥ (= ∅) represents a disjunction over zero literals:∨
L∈∅

L = ⊥

∆1 = {⊥} represents a conjunction over one clause:∧
φ∈{⊥}

φ = ⊥

∆2 = ∅ represents a conjunction over zero clauses:∧
φ∈∅

φ = ⊤
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Resolution: Idea

Resolution

method to test CNF formula φ for unsatisfiability

idea: derive new clauses from φ that logically follow from φ

if empty clause ⊥ can be derived ⇝ φ unsatisfiable

German: Resolution
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The Resolution Rule

C1 ∪ {ℓ},C2 ∪ {ℓ̄}
C1 ∪ C2

“From C1 ∪ {ℓ} and C2 ∪ {ℓ̄}, we can conclude C1 ∪ C2.”

C1 ∪ C2 is resolvent of parent clauses C1 ∪ {ℓ} and C2 ∪ {ℓ̄}.
The literals ℓ and ℓ̄ are called resolution literals,
the corresponding proposition is called resolution variable.

resolvent follows logically from parent clauses (Why?)

German: Resolutionsregel, Resolvent, Elternklauseln,
Resolutionsliterale, Resolutionsvariable

Example

resolvent of {A,B,¬C} and {A,D,C}?
resolvents of {¬A,B,¬C} and {A,D,C}?



Reasoning Resolution Summary

Resolution: Derivations

Definition (derivation)

Notation: R(∆) = ∆ ∪ {C | C is resolvent of two clauses in ∆}

A clause D can be derived from ∆ (in symbols ∆ ⊢ D) if there is a
sequence of clauses C1, . . . ,Cn = D such that for all i ∈ {1, . . . , n}
we have Ci ∈ R(∆ ∪ {C1, . . . ,Ci−1}).

German: Ableitung, abgeleitet

Lemma (soundness of resolution)

If ∆ ⊢ D, then ∆ |= D.

Does the converse direction hold as well (completeness)?

German: Korrektheit, Vollständigkeit
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Resolution: Completeness?

The converse of the lemma does not hold in general.

example:

{{A,B}, {¬B,C}} |= {A,B,C}, but
{{A,B}, {¬B,C}} ̸⊢ {A,B,C}

but: converse holds for special case of empty clause ⊥ (no proof)

Theorem (refutation-completeness of resolution)

∆ is unsatisfiable iff ∆ ⊢ ⊥

German: Widerlegungsvollständigkeit

consequences:

Resolution is a complete proof method
for testing unsatisfiability of CNF formulas.

Resolution can be used for general reasoning
by reducing to a test for unsatisfiability of CNF formulas.
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Example

Let Φ = {P ∨ Q,¬P}. Does Φ |= Q hold?

Solution

test if ((P ∨ Q) ∧ ¬P) → Q is tautology

equivalently: test if ((P ∨ Q) ∧ ¬P) ∧ ¬Q is unsatisfiable

resulting set of clauses: Φ′ = {{P,Q}, {¬P}, {¬Q}}
resolving {P,Q} with {¬P} yields {Q}
resolving {Q} with {¬Q} yields ⊥
observation: empty clause can be derived,
hence Φ′ unsatisfiable

consequently Φ |= Q
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Resolution: Discussion

Resolution is a complete proof method
to test formulas for unsatisfiability.

In the worst case, resolution proofs can take exponential time.

In practice, a strategy which determines
the next resolution step is needed.

In the following chapter, we discuss the DPLL algorithm,
which is a combination of backtracking and resolution.
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Summary

Reasoning: the formula ψ follows from the set of formulas Φ
if all models of Φ are also models of ψ.

Reasoning can be reduced to testing validity
(with the deduction theorem).

Testing validity can be reduced to testing unsatisfiability.

Resolution is a refutation-complete proof method
applicable to formulas in conjunctive normal form.

⇝ can be used to test if a set of clauses is unsatisfiable
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