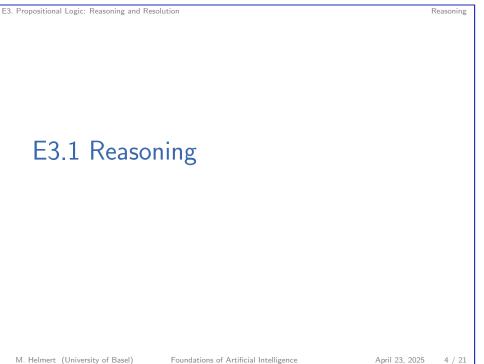
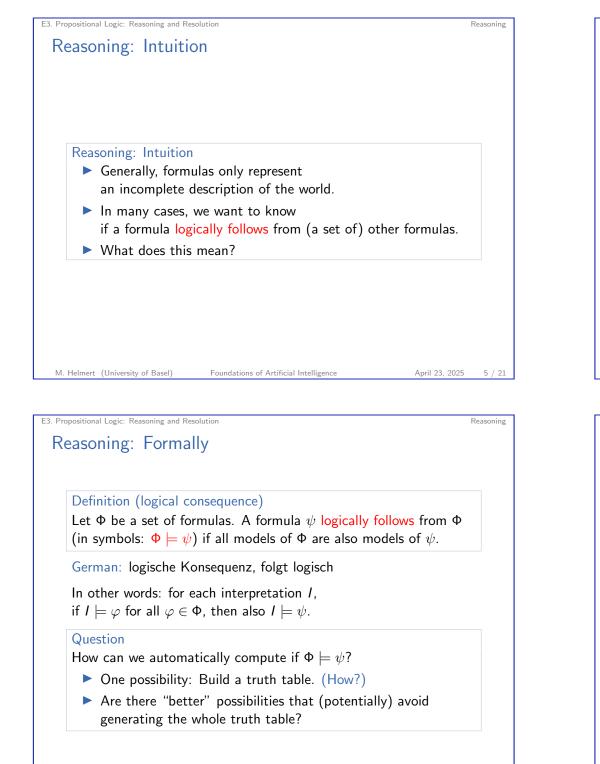


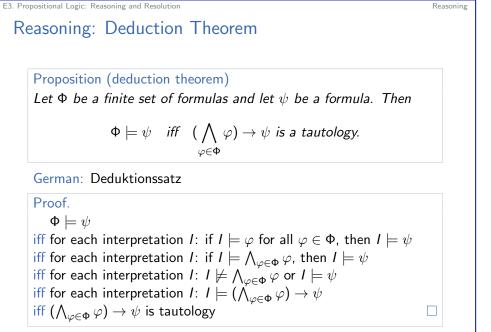
Propositional Logic: Overview Chapter overview: propositional logic ► E1. Syntax and Semantics ▶ E2. Equivalence and Normal Forms ► E3. Reasoning and Resolution ► E4. DPLL Algorithm ► E5. Local Search and Outlook

Foundations of Artificial Intelligence April 23, 2025 — E3. Propositional Logic: Reasoning and Resolution





Propositional Logic: Reasoning and Re			reasoninį
Reasoning: Intuiti	on		
• example: $\varphi =$	$(P \lor Q) \land (R \lor \neg P) \land S$		
S holds in ever	y model of $arphi$.		
What about P	, Q and R?		
\rightsquigarrow consider all mo	dels of φ :		
$ I_2 = \{P \mapsto I_3 \in I_3 \} \} $	$\begin{array}{l} F, Q \mapsto T, R \mapsto F, S \mapsto T \} \\ F, Q \mapsto T, R \mapsto T, S \mapsto T \} \\ T, Q \mapsto F, R \mapsto T, S \mapsto T \} \\ T, Q \mapsto T, R \mapsto T, S \mapsto T \} \end{array}$		
Observation			
In all models o	f $arphi$, the formula ${\it Q} ee {\it R}$ holds a	s well.	
• We say: " $Q \lor$	R logically follows from φ ."		
A. Helmert (University of Basel)	Foundations of Artificial Intelligence	April 23, 2025	6 / 21
Propositional Logic: Reasoning and Re			Dooconing

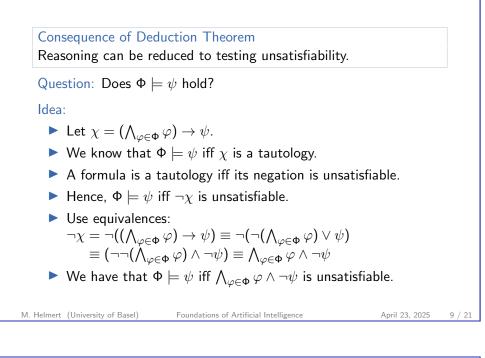


Foundations of Artificial Intelligence

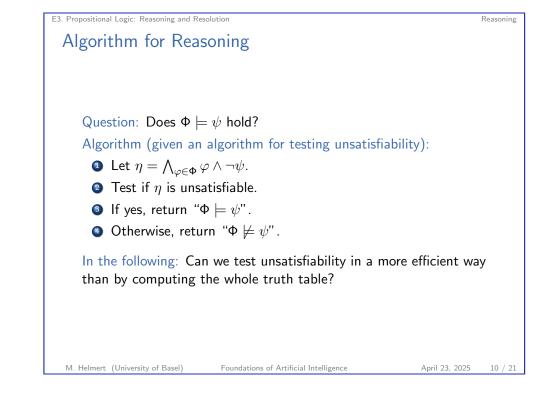
E3. Propositional Logic: Reasoning and Resolution

Reasoning

Reasoning by Unsatisfiability Testing



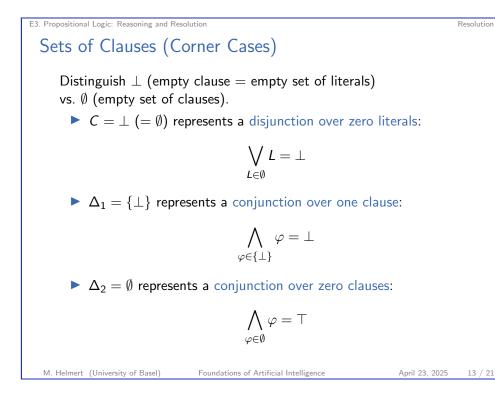
Reasoning



E3. Propositional Logic: Reasoning and Resolution Resolution Sets of Clauses for the rest of this chapter: prerequisite: formulas in conjunctive normal form clause represented as a set C of literals \blacktriangleright formula represented as a set Δ of clauses Example Let $\varphi = (P \lor Q) \land \neg P$. $\blacktriangleright \varphi$ in conjunctive normal form • φ consists of clauses ($P \lor Q$) and $\neg P$ • representation of φ as set of sets of literals: $\{\{P, Q\}, \{\neg P\}\}$

Foundations of Artificial Intelligence

M. Helmert (University of Basel)



E3. Propositional Logic: Reasoning and Resolution

The Resolution Rule

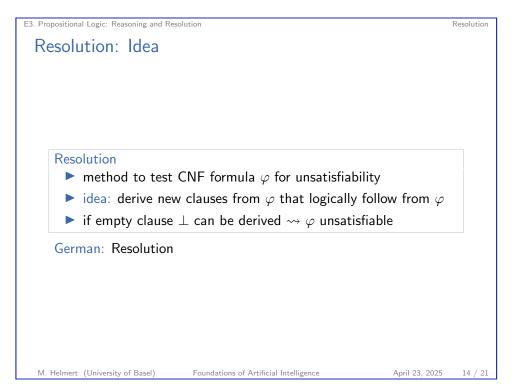
 $\frac{C_1 \cup \{\ell\}, C_2 \cup \{\bar{\ell}\}}{C_1 \cup C_2}$

- "From $C_1 \cup \{\ell\}$ and $C_2 \cup \{\overline{\ell}\}$, we can conclude $C_1 \cup C_2$."
- $C_1 \cup C_2$ is resolvent of parent clauses $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$.
- \blacktriangleright The literals ℓ and $\overline{\ell}$ are called resolution literals. the corresponding proposition is called resolution variable.
- resolvent follows logically from parent clauses (Why?)

German: Resolutionsregel, Resolvent, Elternklauseln, Resolutionsliterale. Resolutionsvariable

Example

- ▶ resolvent of $\{A, B, \neg C\}$ and $\{A, D, C\}$?
- resolvents of $\{\neg A, B, \neg C\}$ and $\{A, D, C\}$?



Resolution: Derivations Definition (derivation) Notation: $R(\Delta) = \Delta \cup \{C \mid C \text{ is resolvent of two clauses in } \Delta\}$ A clause D can be derived from Δ (in symbols $\Delta \vdash D$) if there is a sequence of clauses $C_1, \ldots, C_n = D$ such that for all $i \in \{1, \ldots, n\}$ we have $C_i \in R(\Delta \cup \{C_1, ..., C_{i-1}\})$. German: Ableitung, abgeleitet Lemma (soundness of resolution) If $\Delta \vdash D$, then $\Delta \models D$. Does the converse direction hold as well (completeness)?

German: Korrektheit, Vollständigkeit

M. Helmert (University of Basel)

E3. Propositional Logic: Reasoning and Resolution

Resolution

Resolution: Completeness?

The converse of the lemma does not hold in general. example:

- $\{\{A, B\}, \{\neg B, C\}\} \models \{A, B, C\}$, but
- ▶ $\{\{A, B\}, \{\neg B, C\}\} \not\vdash \{A, B, C\}$

but: converse holds for special case of empty clause \perp (no proof)

German: Widerlegungsvollständigkeit

consequences:

- Resolution is a complete proof method for testing unsatisfiability of CNF formulas.
- Resolution can be used for general reasoning by reducing to a test for unsatisfiability of CNF formulas.

Foundations of Artificial Intelligence

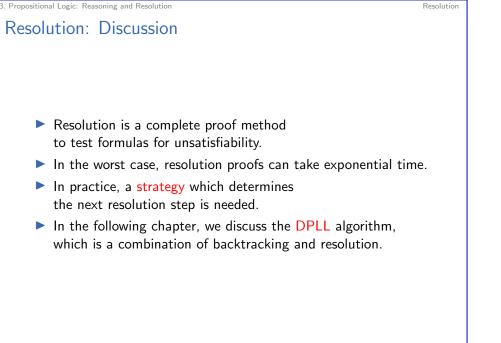
M. Helmert (University of Basel)

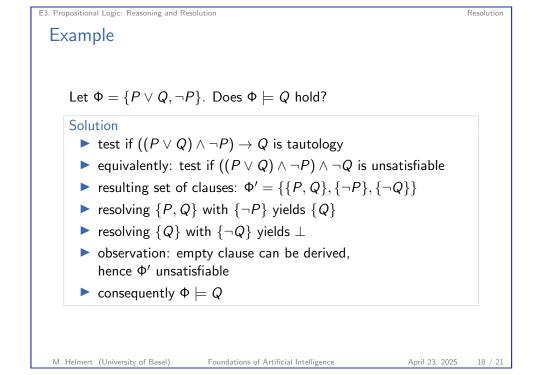
April 23, 2025

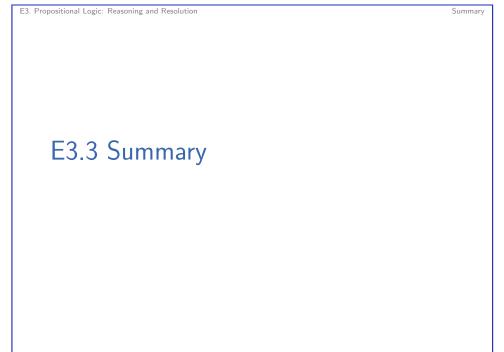
Resolution

17 / 21

E3. Propositional Logic: Reasoning and Resolution







M. Helmert (University of Basel)

E3.	Propositional	Logic:	Reasoning	and	Resolution

Summary

Summary

- Reasoning: the formula ψ follows from the set of formulas Φ if all models of Φ are also models of ψ.
- Reasoning can be reduced to testing validity (with the deduction theorem).
- Testing validity can be reduced to testing unsatisfiability.
- Resolution is a refutation-complete proof method applicable to formulas in conjunctive normal form.
- $\rightsquigarrow\,$ can be used to test if a set of clauses is unsatisfiable

Foundations of Artificial Intelligence

April 23, 2025 21 / 21