Foundations of Artificial Intelligence E2. Propositional Logic: Equivalence and Normal Forms

Malte Helmert

University of Basel

April 23, 2025

Propositional Logic: Overview

Chapter overview: propositional logic

- E1. Syntax and Semantics
- E2. Equivalence and Normal Forms
- E3. Reasoning and Resolution
- E4. DPLL Algorithm
- E5. Local Search and Outlook

Equivalence

Logical Equivalance

Definition (logically equivalent)

Formulas φ and ψ are called logically equivalent ($\varphi \equiv \psi$) if for all interpretations *I*: $I \models \varphi$ iff $I \models \psi$.

German: logisch äquivalent

Equivalences

Logical Equivalences

Let φ , ψ , and η be formulas. • $(\varphi \land \psi) \equiv (\psi \land \varphi)$ and $(\varphi \lor \psi) \equiv (\psi \lor \varphi)$ (commutativity) • $((\varphi \land \psi) \land \eta) \equiv (\varphi \land (\psi \land \eta))$ and $((\varphi \lor \psi) \lor \eta) \equiv (\varphi \lor (\psi \lor \eta))$ (associativity) • $((\varphi \land \psi) \lor \eta) \equiv ((\varphi \lor \eta) \land (\psi \lor \eta))$ and $((\varphi \lor \psi) \land \eta) \equiv ((\varphi \land \eta) \lor (\psi \land \eta))$ (distributivity) • $\neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$ and $\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$ (De Morgan)

•
$$\neg \neg \varphi \equiv \varphi$$
 (double negation)
• $(\varphi \rightarrow \psi) \equiv (\neg \varphi \lor \psi)$ ((\rightarrow)-elimination)

Commutativity and associativity are often used implicitly \rightsquigarrow We write $(X_1 \land X_2 \land X_3 \land X_4)$ instead of $(X_1 \land (X_2 \land (X_3 \land X_4)))$

Normal Forms

Normal Forms: Terminology

Definition (literal)

If $P \in \Sigma$, then the formulas P and $\neg P$ are called literals.

P is called **positive literal**, $\neg P$ is called **negative literal**.

The complementary literal to P is $\neg P$ and vice versa.

For a literal ℓ , the complementary literal to ℓ is denoted with $\overline{\ell}$.

German: Literal, positives/negatives/komplementäres Literal

Question: What is the difference between $\bar{\ell}$ and $\neg \ell$?

Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause. The empty clause (with 0 literals) is \perp . Clauses consisting of exactly one literal are called unit clauses.

German: Klausel, leere Klausel, Einheitsklausel

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.

German: Monom

Normal Forms

Definition (normal forms)

A formula φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{m_i} \ell_{i,j}\right)$$

A formula φ is in disjunctive normal form (DNF) if φ is a disjunction of 0 or more monomials:

$$\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \ell_{i,j} \right)$$

German: konjunktive Normalform, disjunktive Normalform

Normal Forms

For every propositional formula, there exists a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF with equivalences

- eliminate implications $(\varphi \rightarrow \psi) \equiv (\neg \varphi \lor \psi)$
- Some more negations inside $\neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$ $\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$ $\neg \neg \varphi \equiv \varphi$

 $((\rightarrow)\text{-elimination})$

(De Morgan) (De Morgan) (double negation)

istribute ∨ over ∧
 ((φ ∧ ψ) ∨ η) ≡ ((φ ∨ η) ∧ (ψ ∨ η))
simplify constant subformulas (⊤, ⊥)

(distributivity)

There are formulas φ for which every logically equivalent formula in CNF and DNF is exponentially longer than φ .

Summary

- two formulas are logically equivalent if they have the same models
- different kinds of formulas:
 - atomic formulas and literals
 - clauses and monomials
 - conjunctive normal form (CNF) and disjunctive normal form (DNF)
- for every formula, there is a logically equivalent formula in CNF and a logically equivalent formula in DNF