Foundations of Artificial Intelligence E2. Propositional Logic: Equivalence and Normal Forms

Malte Helmert

University of Basel

April 23, 2025

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 23, 2025 1 / 13

Foundations of Artificial Intelligence April 23, 2025 — E2. Propositional Logic: Equivalence and Normal Forms

E2.1 Equivalence

E2.2 Normal Forms

E2.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Propositional Logic: Overview

Chapter overview: propositional logic

- ▶ E1. Syntax and Semantics
- E2. Equivalence and Normal Forms
- E3. Reasoning and Resolution
- E4. DPLL Algorithm
- E5. Local Search and Outlook

E2.1 Equivalence

Logical Equivalance

Definition (logically equivalent)

Formulas φ and ψ are called logically equivalent ($\varphi \equiv \psi$) if for all interpretations *I*: $I \models \varphi$ iff $I \models \psi$.

German: logisch äquivalent

Equivalences

Logical Equivalences Let φ , ψ , and η be formulas. $(\varphi \land \psi) \equiv (\psi \land \varphi)$ and $(\varphi \lor \psi) \equiv (\psi \lor \varphi)$ (commutativity) ($(\varphi \land \psi) \land \eta$) $\equiv (\varphi \land (\psi \land \eta))$ and $((\varphi \lor \psi) \lor \eta) \equiv (\varphi \lor (\psi \lor \eta))$ (associativity) ($(\varphi \land \psi) \lor \eta$) $\equiv ((\varphi \lor \eta) \land (\psi \lor \eta))$ and $((\varphi \lor \psi) \land \eta) \equiv ((\varphi \land \eta) \lor (\psi \land \eta))$ (distributivity) $\blacktriangleright \neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$ and $\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$ (De Morgan) \blacktriangleright $\neg \neg \varphi \equiv \varphi$ (double negation) $\blacktriangleright (\varphi \to \psi) \equiv (\neg \varphi \lor \psi)$ $((\rightarrow)$ -elimination)

Commutativity and associativity are often used implicitly \rightsquigarrow We write $(X_1 \land X_2 \land X_3 \land X_4)$ instead of $(X_1 \land (X_2 \land (X_3 \land X_4)))$

E2.2 Normal Forms

Normal Forms: Terminology

Definition (literal) If $P \in \Sigma$, then the formulas P and $\neg P$ are called literals. P is called positive literal, $\neg P$ is called negative literal. The complementary literal to P is $\neg P$ and vice versa. For a literal ℓ , the complementary literal to ℓ is denoted with $\overline{\ell}$.

German: Literal, positives/negatives/komplementäres Literal Question: What is the difference between $\bar{\ell}$ and $\neg \ell$?

M. Helmert (University of Basel)

Normal Forms: Terminology

Definition (clause) A disjunction of 0 or more literals is called a clause. The empty clause (with 0 literals) is \perp . Clauses consisting of exactly one literal are called unit clauses.

German: Klausel, leere Klausel, Einheitsklausel

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.

German: Monom

Normal Forms

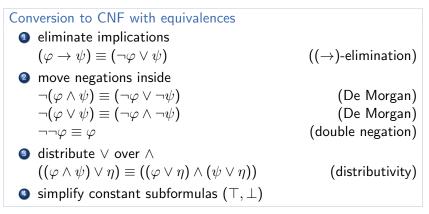
Definition (normal forms)

A formula φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \ell_{i,j} \right)$$

A formula φ is in disjunctive normal form (DNF) if φ is a disjunction of 0 or more monomials:

$$\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \ell_{i,j} \right)$$


German: konjunktive Normalform, disjunktive Normalform

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Normal Forms

For every propositional formula, there exists a logically equivalent propositional formula in CNF and in DNF.

There are formulas φ for which every logically equivalent formula in CNF and DNF is exponentially longer than $\varphi.$

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

E2.3 Summary

Summary

- two formulas are logically equivalent if they have the same models
- different kinds of formulas:
 - atomic formulas and literals
 - clauses and monomials
 - conjunctive normal form (CNF) and disjunctive normal form (DNF)
- for every formula, there is a logically equivalent formula in CNF and a logically equivalent formula in DNF