

Foundations of Art April 16, 2025 — D7. Const	ificial Intelligence raint Satisfaction Problems: Decompos	sition Methods	
D7.1 Decompos	ition Methods		
D7.2 Conditioning			
D7.3 Tree Decomposition			
D7.4 Summary			
M. Helmert (University of Basel)	Foundations of Artificial Intelligence	April 16, 2025	2 / 20

D7. Constraint Satisfaction Problems: , Decomposition Methods

Decomposition Methods

D7.1 Decomposition Methods

More Complex Graphs

What if the constraint graph is not a tree and does not decompose into several components?

- ▶ idea 1: conditioning
- ► idea 2: tree decomposition

German: Konditionierung, Baumzerlegung

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

D7. Constraint Satisfaction Problems: , Decomposition Methods

Conditioning

5 / 20

7 / 20

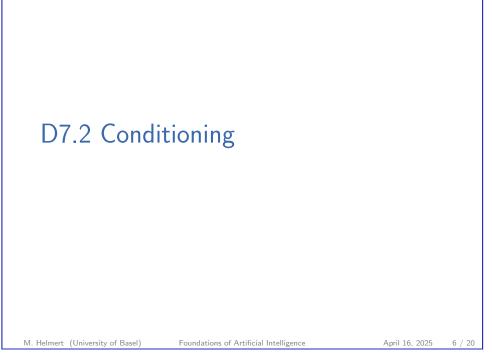
April 16, 2025

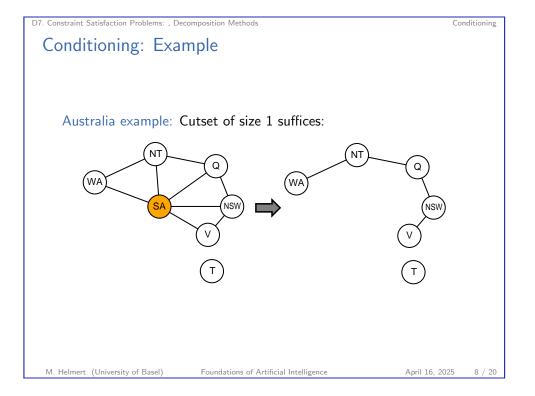
Conditioning

Conditioning

idea: Apply backtracking with forward checking until the constraint graph restricted to the remaining unassigned variables decomposes or is a tree.

remaining problem \rightsquigarrow algorithms for simple constraint graphs

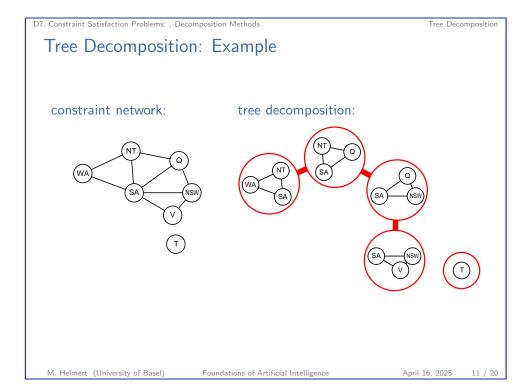

cutset conditioning:


Choose variable order such that early variables form a small cutset (i.e., set of variables such that removing these variables results in an acyclic constraint graph).

German: Cutset

time complexity: *n* variables, m < n in cutset, maximal domain size *k*: $O(k^m \cdot (n-m)k^2)$

(Finding optimal cutsets is an NP-complete problem.)


April 16, 2025

9 / 20

D7.3 Tree Decomposition

M. Helmert (University of Basel)

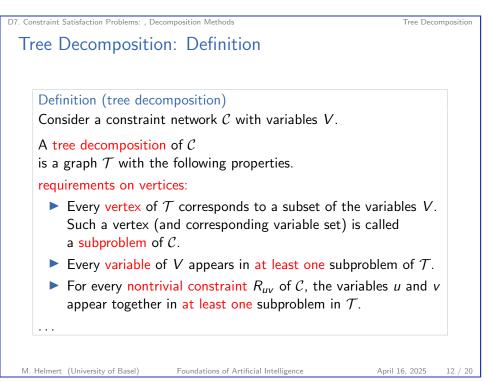
Foundations of Artificial Intelligence

D7. Constraint Satisfaction Problems: , Decomposition Methods

Tree Decomposition

basic idea of tree decomposition:

- Decompose constraint network into smaller subproblems (overlapping).
- Find solutions for the subproblems.
- Build overall solution based on the subsolutions.


more details:

- "Overall solution building problem" based on subsolutions is a constraint network itself (meta constraint network).
- Choose subproblems in a way that the constraint graph of the meta constraint network is a tree/forest.
 - \rightsquigarrow build overall solution with efficient tree algorithm

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 16, 2025 10 / 20

Tree Decomposition: Definition

Definition (tree decomposition)

Consider a constraint network C with variables V.

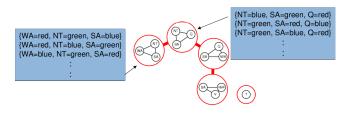
A tree decomposition of C is a graph T with the following properties.

. . .

requirements on edges:

- For each variable v ∈ V, let T_v be the set of vertices corresponding to the subproblems that contain v.
- For each variable v, the set T_v is connected,
 i.e., each vertex in T_v is reachable from every other vertex in T_v without visiting vertices not contained in T_v.
- \blacktriangleright T is acyclic (a tree/forest)

M. Helmert (University of Basel)


Foundations of Artificial Intelligence April 16, 2025

D7. Constraint Satisfaction Problems: , Decomposition Methods

Solving with Tree Decompositions: Algorithm

algorithm:

- Find all solutions for all subproblems in the decomposition and build a tree-like meta constraint network.
- Constraints in meta constraint network: subsolutions must be compatible.
- Solve meta constraint network with an algorithm for tree-like networks.

D7. Constraint Satisfaction Problems: , Decomposition Methods

Meta Constraint Network

meta constraint network $\mathcal{C}^{\mathcal{T}} = \langle V^{\mathcal{T}}, dom^{\mathcal{T}}, (\mathcal{R}^{\mathcal{T}}_{\scriptscriptstyle uv}) angle$	
based on tree decomposition ${\cal T}$	

- ▶ $V^{\mathcal{T}}$:= vertices of \mathcal{T} (i.e., subproblems of \mathcal{C} occurring in \mathcal{T})
- dom^T(v) := set of solutions of subproblem v
- *R*^T_{uv} := {⟨s, t⟩ | s, t compatible solutions of subproblems u, v}

 if {u, v} is an edge of *T*. (All constraints between

 subproblems not connected by an edge of *T* are trivial.)

Foundations of Artificial Intelligence

German: Meta-Constraintnetz

Solutions of two subproblems are called compatible if all overlapping variables are assigned identically.

M. Helmert (University of Basel)

April 16, 2025

14 / 20

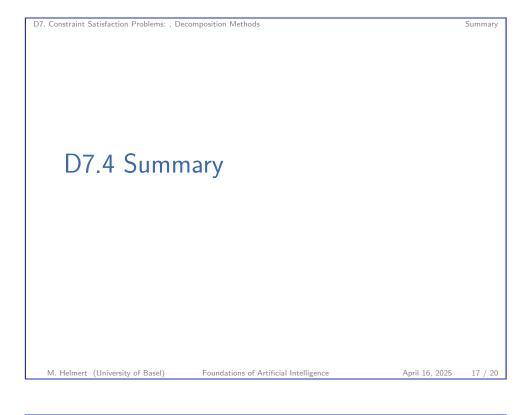
Tree Decomposition

Tree Decomposition

D7. Constraint Satisfaction Problems: , Decomposition Methods

Good Tree Decompositions

- goal: each subproblem has as few variables as possible
 - \blacktriangleright crucial: subproblem V' in \mathcal{T} with highest number of variables
 - number of variables in V' minus 1 is called width of the decomposition
 - best width over all decompositions: tree width of the constraint graph (computation is NP-complete)

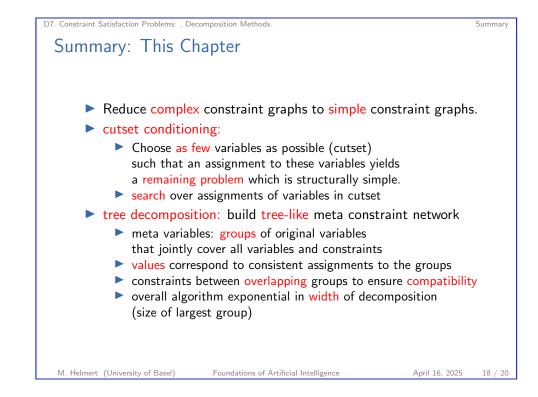

time complexity of solving algorithm based on tree decompositions: $O(nk^{w+1})$, where w is width of decomposition (requires specialized version of revise; otherwise $O(nk^{2w+2})$.)

M. Helmert (University of Basel)

Tree Decomposition

13 / 20

Tree Decomposition


D7. Constraint Satisfaction Problems: , Decomposition Methods

Summary: CSPs

Constraint Satisfaction Problems (CSP)

General formalism for problems where

- values have to be assigned to variables
- such that the given constraints are satisfied.
- algorithms: backtracking search + inference
 (e.g., forward checking, arc consistency, path consistency)
- variable and value orders important
- more efficient: exploit structure of constraint graph (connected components; trees)

D7. Constraint Satisfaction Problems: , Decomposition Methods

More Advanced Topics

more advanced topics (not considered in this course):

- **backjumping**: backtracking over several layers
- no-good learning: infer additional constraints based on information collected during backtracking
- local search methods in the space of total, but not necessarily consistent assignments
- tractable constraint classes: identification of constraint types that allow for polynomial algorithms
- solutions of different quality: constraint optimization problems (COP)
- \rightsquigarrow more than enough content for a one-semester course

Summar

Summar