

Foundations of Artif April 14, 2025 — D5. Constrai	icial Intelligence int Satisfaction Problems: Path Consist	ency	
D5.1 Beyond Arc	Consistency		
D5.2 Path Consis	tency		
D5.3 Summary			
M. Helmert (University of Basel)	Foundations of Artificial Intelligence	April 14, 2025	2 / 17
D5. Constraint Satisfaction Problems: Path Consistency		Beyond Arc Consistency	

D5.1 Beyond Arc Consistency

Beyond Arc Consistency

Beyond Arc Consistency: Path Consistency

idea of arc consistency:

- For every assignment to a variable u there must be a suitable assignment to every other variable v.
- If not: remove values of u for which no suitable "partner" assignment to v exists.
- \rightsquigarrow tighter unary constraint on u

This idea can be extended to three variables (path consistency):

For every joint assignment to variables u, v there must be a suitable assignment to every third variable w.

Foundations of Artificial Intelligence

- If not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
- \rightsquigarrow tighter binary constraint on *u* and *v*

German: Pfadkonsistenz

M. Helmert (University of Basel)

April 14, 2025

D5. Constraint Satisfaction Problems: Path Consistency

Path Consistency

5 / 17

D5.2 Path Consistency

Beyond Arc Consistency: *i*-Consistency

general concept of *i*-consistency for $i \ge 2$:

- For every joint assignment to variables v₁,..., v_{i-1} there must be a suitable assignment to every *i*-th variable v_i.
- If not: remove value tuples of v₁,..., v_{i-1} for which no suitable "partner" assignment for v_i exists.
- \rightsquigarrow tighter (i-1)-ary constraint on v_1, \ldots, v_{i-1}
- 2-consistency = arc consistency
- 3-consistency = path consistency (*)

We do not consider general *i*-consistency further as larger values than i = 3 are rarely used and we restrict ourselves to binary constraints in this course. (*) usual definitions of 3-consistency vs. path consistency differ when ternary constraints are allowed

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 14, 2025 6 / 17

Path Consistency

D5. Constraint Satisfaction Problems: Path Consistency Path Path Consistency: Definition Definition (path consistent) Let $C = \langle V, \text{dom}, (R_{uv}) \rangle$ be a constraint network. Two different variables $u, v \in V$ are path consistent with respect to a third variable $w \in V$ if for all values $d_u \in \text{dom}(u), d_v \in \text{dom}(v)$ with $\langle d_u, d_v \rangle \in R_{uv}$ there is a value $d_w \in \text{dom}(w)$ with $\langle d_u, d_w \rangle \in R_{uw}$ and

⟨d_v, d_w⟩ ∈ R_{vw}.
The constraint network C is path consistent if for all triples of different variables u, v, w,

the variables u and v are path consistent with respect to w.

Path Consistency on Running Example

Running Example

$$\begin{split} R_{wz} &= \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle \} \\ R_{yz} &= \{ \langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle \} \\ R_{wy} &= \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \\ &\quad \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \\ &\quad \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle, \\ &\quad \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle, \langle 4, 4 \rangle \} \end{split}$$

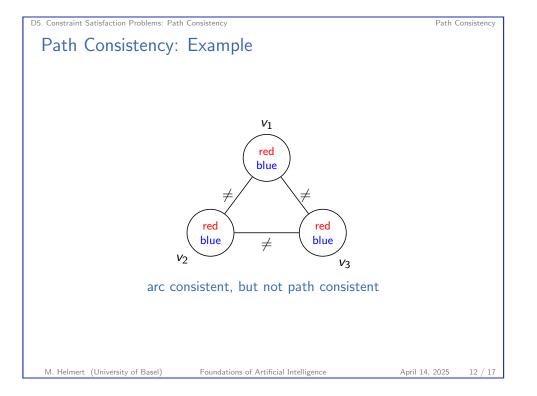
Are w and y path consistent with respect to z? No!

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

D5. Constraint Satisfaction Problems: Path Consistency: Remarks:
Even if the constraint R_{uv} is trivial, path consistency can infer nontrivial constraints between u and v.
name "path consistency": path u → w → v leads to new information on u → v

Path Consistency on Running Example


Running Example $\begin{aligned} R_{wz} &= \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle \} \\ R_{yz} &= \{ \langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle \} \\ R_{wy} &= \{ \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 4 \rangle \} \end{aligned}$

Are w and y path consistent with respect to z? Yes!

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 14, 2025 10 / 17

Path Consistency

April 14, 2025

9 / 17

Path Consistency

Processing Variable Triples: revise-3

analogous to revise for arc consistency:

function revise- $3(\mathcal{C}, u, v, w)$: $\langle V, \operatorname{dom}, (R_{\mu\nu}) \rangle := \mathcal{C}$ for each $\langle d_{\mu}, d_{\nu} \rangle \in R_{\mu\nu}$: **if** there is no $d_w \in \text{dom}(w)$ with $\langle d_u, d_w \rangle \in R_{uw}$ and $\langle d_v, d_w \rangle \in R_{vw}$: **remove** $\langle d_{\mu}, d_{\nu} \rangle$ from $R_{\mu\nu}$

input: constraint network C and three variables u, v, w of Ceffect: u, v path consistent with respect to w. All violating pairs are removed from R_{uv} .

Foundations of Artificial Intelligence

time complexity: $O(k^3)$ where k is maximal domain size

M. Helmert (University of Basel)

April 14, 2025

Path Consistency

13 / 17

Path Consistency

D5. Constraint Satisfaction Problems: Path Consistency

PC-2: Discussion

The comments for AC-3 hold analogously.

- PC-2 enforces path consistency
- proof idea: invariant of the while loop: if $\langle u, v, w \rangle \notin queue$, then u, v path consistent with respect to w
- ▶ time complexity $O(n^3k^5)$ for *n* variables and maximal domain size k (Why?)

```
D5. Constraint Satisfaction Problems: Path Consistency
```

Enforcing Path Consistency: PC-2

analogous to AC-3 for arc consistency:

function $PC-2(C)$:			
$\langle V, dom, (R_{uv}) angle := \mathcal{C}$			
$queue := \emptyset$			
for each set of two variables $\{u, v\}$:			
for each $w \in V \setminus \{u, v\}$:			
insert $\langle u, v, w \rangle$ into queue			
while queue $\neq \emptyset$:			
remove any element $\langle u, v, w \rangle$ from <i>queue</i>			
revise-3(C, u, v, w)			
if R_{uv} changed in the call to revise-3:			
for each $w' \in V \setminus \{u, v\}$:			
insert $\langle w', u, v \rangle$ into queue			
insert $\langle w', v, u angle$ into queue			
M. Helmert (University of Basel) Foundations of Artificial Intelligence	April 14, 2025	14 / 17	

Path Consistency

Summary generalization of arc consistency (considers pairs of variables) to path consistency (considers triples of variables) and *i*-consistency (considers *i*-tuples of variables) arc consistency tightens unary constraints path consistency tightens binary constraints • *i*-consistency tightens (i - 1)-ary constraints higher levels of consistency more powerful but more expensive than arc consistency

Foundations of Artificial Intelligence

April 14, 2025 17 / 17

Summary