Foundations of Artificial Intelligence D5. Constraint Satisfaction Problems: Path Consistency

Malte Helmert

University of Basel

April 14, 2025

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 14, 2025 1 / 17

Foundations of Artificial Intelligence April 14, 2025 — D5. Constraint Satisfaction Problems: Path Consistency

D5.1 Beyond Arc Consistency

D5.2 Path Consistency

D5.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

- ▶ D1–D2. Introduction
- D3–D5. Basic Algorithms
 - D3. Backtracking
 - D4. Arc Consistency
 - D5. Path Consistency
- ▶ D6–D7. Problem Structure

D5.1 Beyond Arc Consistency

Beyond Arc Consistency: Path Consistency

idea of arc consistency:

- For every assignment to a variable u there must be a suitable assignment to every other variable v.
- If not: remove values of u for which no suitable "partner" assignment to v exists.
- \rightsquigarrow tighter unary constraint on u

This idea can be extended to three variables (path consistency):

- For every joint assignment to variables u, v there must be a suitable assignment to every third variable w.
- If not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
- \rightsquigarrow tighter binary constraint on u and v

German: Pfadkonsistenz

M. Helmert (University of Basel)

Beyond Arc Consistency: *i*-Consistency

general concept of *i*-consistency for $i \ge 2$:

- For every joint assignment to variables v₁,..., v_{i-1} there must be a suitable assignment to every *i*-th variable v_i.
- If not: remove value tuples of v₁,..., v_{i-1} for which no suitable "partner" assignment for v_i exists.
- \rightarrow tighter (i-1)-ary constraint on v_1, \ldots, v_{i-1}
- 2-consistency = arc consistency
- 3-consistency = path consistency (*)

We do not consider general *i*-consistency further
as larger values than *i* = 3 are rarely used
and we restrict ourselves to binary constraints in this course.
(*) usual definitions of 3-consistency vs. path consistency differ
when ternary constraints are allowed

D5.2 Path Consistency

Path Consistency: Definition

Definition (path consistent)

Let $C = \langle V, \text{dom}, (R_{uv}) \rangle$ be a constraint network.

- Two different variables u, v ∈ V are path consistent with respect to a third variable w ∈ V if for all values d_u ∈ dom(u), d_v ∈ dom(v) with ⟨d_u, d_v⟩ ∈ R_{uv} there is a value d_w ∈ dom(w) with ⟨d_u, d_w⟩ ∈ R_{uw} and ⟨d_v, d_w⟩ ∈ R_{vw}.
- The constraint network C is path consistent if for all triples of different variables u, v, w, the variables u and v are path consistent with respect to w.

Path Consistency on Running Example

Running Example

$$\begin{aligned} R_{wz} &= \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle \} \\ R_{yz} &= \{ \langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle \} \\ R_{wy} &= \{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \\ &\quad \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 2, 4 \rangle, \\ &\quad \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle, \\ &\quad \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle, \langle 4, 4 \rangle \} \end{aligned}$$

Are w and y path consistent with respect to z? No!

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Path Consistency on Running Example

Running Example

$$R_{wz} = \{ \langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 3 \rangle \}$$

$$R_{yz} = \{ \langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 4, 1 \rangle, \langle 4, 2 \rangle, \langle 4, 3 \rangle \}$$

$$R_{wy} = \{ \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 2, 4 \rangle \}$$

Are w and y path consistent with respect to z? Yes!

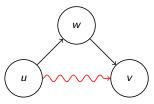
M. Helmert (University of Basel)

Foundations of Artificial Intelligence

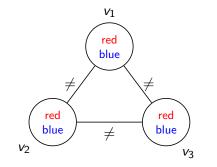
Path Consistency: Remarks

remarks:

- Even if the constraint R_{uv} is trivial, path consistency can infer nontrivial constraints between u and v.
- ▶ name "path consistency": path $u \rightarrow w \rightarrow v$ leads to new information on $u \rightarrow v$



Path Consistency: Example



arc consistent, but not path consistent

Processing Variable Triples: revise-3

analogous to revise for arc consistency:

```
function revise-3(C, u, v, w):

\langle V, dom, (R_{uv}) \rangle := C

for each \langle d_u, d_v \rangle \in R_{uv}:

if there is no d_w \in \text{dom}(w) with

\langle d_u, d_w \rangle \in R_{uw} and \langle d_v, d_w \rangle \in R_{vw}:

remove \langle d_u, d_v \rangle from R_{uv}
```

input: constraint network C and three variables u, v, w of C effect: u, v path consistent with respect to w. All violating pairs are removed from R_{uv} . time complexity: $O(k^3)$ where k is maximal domain size

Enforcing Path Consistency: PC-2

```
analogous to AC-3 for arc consistency:
```

```
function PC-2(C):
\langle V, \mathsf{dom}, (R_{\mu\nu}) \rangle := \mathcal{C}
queue := \emptyset
for each set of two variables \{u, v\}:
       for each w \in V \setminus \{u, v\}:
              insert \langle u, v, w \rangle into queue
while queue \neq \emptyset:
       remove any element \langle u, v, w \rangle from queue
       revise-3(\mathcal{C}, u, v, w)
       if R_{\mu\nu} changed in the call to revise-3:
              for each w' \in V \setminus \{u, v\}:
                     insert \langle w', u, v \rangle into queue
                     insert \langle w', v, u \rangle into queue
```

PC-2: Discussion

The comments for AC-3 hold analogously.

- PC-2 enforces path consistency
- proof idea: invariant of the while loop: if (u, v, w) ∉ queue, then u, v path consistent with respect to w
- time complexity O(n³k⁵) for n variables and maximal domain size k (Why?)

D5.3 Summary

Summary

generalization of

arc consistency (considers pairs of variables) to path consistency (considers triples of variables) and *i*-consistency (considers *i*-tuples of variables)

- arc consistency tightens unary constraints
- path consistency tightens binary constraints
- ▶ *i*-consistency tightens (*i* − 1)-ary constraints
- higher levels of consistency more powerful but more expensive than arc consistency