
Foundations of Artificial Intelligence
D4. Constraint Satisfaction Problems: Arc Consistency

Malte Helmert

University of Basel

April 9, 2025

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 1 / 33



Foundations of Artificial Intelligence
April 9, 2025 — D4. Constraint Satisfaction Problems: Arc Consistency

D4.1 Inference

D4.2 Forward Checking

D4.3 Arc Consistency

D4.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 2 / 33



Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

▶ D1–D2. Introduction
▶ D3–D5. Basic Algorithms

▶ D3. Backtracking
▶ D4. Arc Consistency
▶ D5. Path Consistency

▶ D6–D7. Problem Structure

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 3 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

D4.1 Inference

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 4 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Inference

Inference

Derive additional constraints (here: unary or binary)
that are implied by the given constraints,
i.e., that are satisfied in all solutions.

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 5 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Inference: Example

Running Example

binary constraints:

▶ Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
▶ Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
▶ Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
▶ Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

▶ dom(w) = {1, 2, 3, 4}
▶ dom(x) = {1, 2, 3}
▶ dom(y) = {1, 2, 3, 4}
▶ dom(z) = {1, 2, 3}

Can we use the constraint Rwz (w < z) to come up with a unary
constraint Rw?

⇝ tighten domain with unary constraint

⇝

(sometimes called node consistency)

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 6 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Inference: Example

Running Example

binary constraints:

▶ Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
▶ Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
▶ Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
▶ Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

▶ dom(w) = {1, 2}
▶ dom(x) = {1, 2, 3}
▶ dom(y) = {1, 2, 3, 4}
▶ dom(z) = {1, 2, 3}

Can we use the constraint Rwz (w < z) to come up with a unary
constraint Rw?
⇝ tighten domain with unary constraint

⇝

(sometimes called node consistency)

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 7 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Inference: Example

Running Example

binary constraints:

▶ Rwx = {⟨2, 1⟩}
▶ Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
▶ Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
▶ Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

▶ dom(w) = {1, 2}
▶ dom(x) = {1, 2, 3}
▶ dom(y) = {1, 2, 3, 4}
▶ dom(z) = {1, 2, 3}

How does this affect the binary constraint Rwx?

Placeholder
for same
height

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 8 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Inference: Example

Running Example

binary constraints:

▶ Rwx = {⟨2, 1⟩}
▶ Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
▶ Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
▶ Rwy = {⟨1, 3⟩, ⟨1, 4⟩, ⟨2, 4⟩}

domains (unary constraints):

▶ dom(w) = {1, 2}
▶ dom(x) = {1, 2, 3}
▶ dom(y) = {1, 2, 3, 4}
▶ dom(z) = {1, 2, 3}

Can we generate a “new” binary constraint from w < z and z < y?
(i.e., tighten a trivial constraint)

Placeholder
for same height

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 9 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Trade-Off Search vs. Inference

Inference formally

For a given constraint network C, replace C
with an equivalent, but tighter constraint network.

Trade-off:

▶ the more complex the inference, and

▶ the more often inference is applied,

▶ the smaller the resulting state space, but

▶ the higher the complexity per search node.

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 10 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

When to Apply Inference?

different possibilities to apply inference:

▶ once as preprocessing before search

▶ combined with search: before recursive calls
during backtracking procedure
▶ already assigned variable v 7→ d corresponds to dom(v) = {d}
⇝ more inferences possible

▶ during backtracking, derived constraints have to be retracted
because they were based on the given assignment

⇝ powerful, but possibly expensive

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 11 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Backtracking with Inference

function BacktrackingWithInference(C, α):
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

C′ := ⟨V , dom′, (R ′
uv )⟩ := copy of C

apply inference to C′

if dom′(v) ̸= ∅ for all variables v :

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:
α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C′, α′)
if α′′ ̸= inconsistent:

return α′′

return inconsistent

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 12 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Inference

Backtracking with Inference: Discussion

▶ Inference is a placeholder:
different inference methods can be applied.

▶ Inference methods can recognize unsolvability (given α)
and indicate this by clearing the domain of a variable.

▶ Efficient implementations of inference are often incremental:
the last assigned variable/value pair v 7→ d is taken
into account to speed up the inference computation.

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 13 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Forward Checking

D4.2 Forward Checking

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 14 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Forward Checking

Forward Checking

We start with a simple inference method:

Forward Checking

Let α be a partial assignment.
Inference: For all unassigned variables v in α,
remove all values from the domain of v that are in conflict
with already assigned variable/value pairs in α.

⇝ definition of conflict as in the previous chapter

Incremental computation:

▶ When adding v 7→ d to the assignment,
delete all pairs that conflict with v 7→ d .

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 15 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Forward Checking

Forward Checking: Example

Running Example

Removing values in conflict with α = {w 7→ 2}:

binary constraints:

▶ Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
▶ Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
▶ Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

domains:

▶ w is already assigned

▶ dom(x) = {1, 2, 3}
▶ dom(y) = {1, 2, 3, 4}
▶ dom(z) = {1, 2, 3}

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 16 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Forward Checking

Forward Checking: Example

Running Example

Removing values in conflict with α = {w 7→ 2}:

binary constraints:

▶ Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
▶ Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
▶ Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

domains:

▶ w is already assigned

▶ dom(x) = {1}
▶ dom(y) = {1, 2, 3, 4}
▶ dom(z) = {3}

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 17 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Forward Checking

Forward Checking: Discussion

properties of forward checking:

▶ correct inference method (retains equivalence)

▶ affects domains (= unary constraints),
but not binary constraints

▶ consistency check at the beginning of the backtracking
procedure no longer needed (Why?)

▶ cheap, but often still useful inference method

⇝ apply at least forward checking in the backtracking procedure

In the following, we will consider more powerful inference methods.

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 18 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

D4.3 Arc Consistency

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 19 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

Arc Consistency: Definition

Definition (Arc Consistent)

Let C = ⟨V , dom, (Ruv )⟩ be a constraint network.

1 The variable v ∈ V is arc consistent
with respect to another variable v ′ ∈ V ,
if for every value d ∈ dom(v)
there exists a value d ′ ∈ dom(v ′) with ⟨d , d ′⟩ ∈ Rvv ′ .

2 The constraint network C is arc consistent,
if every variable v ∈ V is arc consistent
with respect to every other variable v ′ ∈ V .

German: kantenkonsistent

remarks:

▶ definition for variable pair is not symmetrical

▶ v always arc consistent with respect to v ′

if the constraint between v and v ′ is trivial
M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 20 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

Arc Consistency: Example

Running Example

Consider variables w and z from our running example:

▶ dom(w) = {1, 2, 3, 4}
▶ dom(z) = {1, 2, 3}
▶ Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

1

2

3

4

1

2

3
w z

Arc consistency
of w with respect to z and
of z with respect to w
is violated.

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 21 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

Enforcing Arc Consistency

▶ Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v ′,
is a correct inference method. (Why?)

▶ more powerful than forward checking (Why?)

⇝ Forward checking is a special case:
enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to forward checking.

We will next consider algorithms that enforce arc consistency.

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 22 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

Processing Variable Pairs: revise

function revise(C, v , v ′):
⟨V , dom, (Ruv )⟩ := C
for each d ∈ dom(v):

if there is no d ′ ∈ dom(v ′) with ⟨d , d ′⟩ ∈ Rvv ′ :
remove d from dom(v)

input: constraint network C and two variables v , v ′ of C
effect: v arc consistent with respect to v ′.
All violating values in dom(v) are removed.

time complexity: O(k2), where k is maximal domain size

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 23 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

revise(C,w , z) in Running Example

11

22

33

44

1

2

3

w z

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 24 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

Enforcing Arc Consistency: AC-1

function AC-1(C):
⟨V , dom, (Ruv )⟩ := C
repeat

for each nontrivial constraint Ruv :
revise(C, u, v)
revise(C, v , u)

until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: O(n · e · k3), with n variables,
e nontrivial constraints and maximal domain size k

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 25 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

AC-1: Discussion

▶ AC-1 does the job, but is rather inefficient.

▶ Drawback: Variable pairs are often checked again and again
although their domains have remained unchanged.

▶ These (redundant) checks can be saved.

⇝ more efficient algorithm: AC-3

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 26 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

Enforcing Arc Consistency: AC-3

idea: store potentially inconsistent variable pairs in a queue

function AC-3(C):
⟨V , dom, (Ruv )⟩ := C
queue := ∅
for each nontrivial constraint Ruv :

insert ⟨u, v⟩ into queue
insert ⟨v , u⟩ into queue

while queue ̸= ∅:
remove an arbitrary element ⟨u, v⟩ from queue
revise(C, u, v)
if dom(u) changed in the call to revise:

for each w ∈ V \ {u, v} where Rwu is nontrivial:
insert ⟨w , u⟩ into queue

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 27 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

AC-3: Discussion

▶ queue can be an arbitrary data structure
that supports insert and remove operations
(the order of removal does not affect the result)

⇝ use data structure with fast insertion and removal, e.g., stack

▶ AC-3 has the same effect as AC-1:
it enforces arc consistency

▶ proof idea: invariant of the while loop:
If ⟨u, v⟩ /∈ queue, then u is arc consistent with respect to v

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 28 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

AC-3: Time Complexity

Proposition (time complexity of AC-3)

Let C be a constraint network with e nontrivial constraints
and maximal domain size k.

The time complexity of AC-3 is O(e · k3).

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 29 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Arc Consistency

AC-3: Time Complexity (Proof)

Proof.

Consider a pair ⟨u, v⟩ such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair ⟨u, v⟩ is inserted into the queue
at most k + 1 times ⇝ at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 30 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Summary

D4.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 31 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Summary

Summary: Inference

▶ inference: derivation of additional constraints
that are implied by the known constraints

⇝ tighter equivalent constraint network

▶ trade-off search vs. inference

▶ inference as preprocessing or integrated into backtracking

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 32 / 33



D4. Constraint Satisfaction Problems: Arc Consistency Summary

Summary: Forward Checking, Arc Consistency

▶ cheap and easy inference: forward checking
▶ remove values that conflict with already assigned values

▶ more expensive and more powerful: arc consistency
▶ iteratively remove values without a suitable “partner value”

for another variable until fixed-point reached
▶ efficient implementation of AC-3: O(ek3)

with e: #nontrivial constraints, k : size of domain

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 33 / 33


	Inference
	

	Forward Checking
	

	Arc Consistency
	

	Summary
	


