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Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

▶ D1–D2. Introduction
▶ D3–D5. Basic Algorithms

▶ D3. Backtracking
▶ D4. Arc Consistency
▶ D5. Path Consistency

▶ D6–D7. Problem Structure
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D3.1 CSP Algorithms
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D3. Constraint Satisfaction Problems: Backtracking CSP Algorithms

CSP Algorithms

In the following chapters, we consider algorithms for solving
constraint networks.

basic concepts:

▶ search: check partial assignments systematically

▶ backtracking: discard inconsistent partial assignments

▶ inference: derive equivalent, but tighter constraints
to reduce the size of the search space
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D3.2 Naive Backtracking
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Naive Backtracking (= Without Inference)

function NaiveBacktracking(C, α):
⟨V , dom, (Ruv )⟩ := C
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

select some variable v for which α is not defined

for each d ∈ dom(v) in some order:
α′ := α ∪ {v 7→ d}
α′′ := NaiveBacktracking(C, α′)
if α′′ ̸= inconsistent:

return α′′

return inconsistent

input: constraint network C and partial assignment α for C
(first invocation: empty assignment α = ∅)
result: solution of C or inconsistent
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Running Example

Full Formal Model of Running Example

C = ⟨V , dom, (Ruv )⟩ with
▶ variables:

V = {w , x , y , z}
▶ domains:

dom(w) = dom(y) = {1, 2, 3, 4}
dom(x) = dom(z) = {1, 2, 3}

▶ constraints:
Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}
Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 9, 2025 8 / 22



D3. Constraint Satisfaction Problems: Backtracking Naive Backtracking

Running Example: Search Tree

Rwx = {⟨2, 1⟩, ⟨4, 2⟩}
Rwz = {⟨1, 2⟩, ⟨1, 3⟩, ⟨2, 3⟩}

Ryz = {⟨2, 1⟩, ⟨3, 1⟩, ⟨3, 2⟩,

Ryz = {

⟨4, 1⟩, ⟨4, 2⟩, ⟨4, 3⟩}
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Is This a New Algorithm?

We have already seen this algorithm:
Backtracking corresponds to depth-first search (Chapter B8)
with the following state space:

▶ states: partial assignments

▶ initial state: empty assignment ∅
▶ goal states: consistent total assignments

▶ actions: assignv ,d assigns value d ∈ dom(v) to variable v

▶ action costs: all 0 (all solutions are of equal quality)
▶ transitions:

▶ for each non-total consistent assignment α,
choose variable v = select(α) that is unassigned in α

▶ transition α
assignv,d−−−−−→ α ∪ {v 7→ d} for each d ∈ dom(v)
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Why Depth-First Search?

Depth-first search is particularly well-suited for CSPs:

▶ path length bounded (by the number of variables)

▶ solutions located at the same depth (lowest search layer)

▶ state space is directed tree, initial state is the root
⇝ no duplicates (Why?)

Hence none of the problematic cases for depth-first search occurs.
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Naive Backtracking: Discussion

▶ Naive backtracking often has to exhaustively explore
similar search paths (i.e., partial assignments
that are identical except for a few variables).

▶ “Critical” variables are not recognized
and hence considered for assignment (too) late.

▶ Decisions that necessarily lead to constraint violations
are only recognized when all variables involved
in the constraint have been assigned.

⇝ more intelligence by focusing on critical decisions

⇝

and by inference of consequences of previous decisions
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D3.3 Variable and Value Orders
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Naive Backtracking

function NaiveBacktracking(C, α):
⟨V , dom, (Ruv )⟩ := C
if α is inconsistent with C:

return inconsistent

if α is a total assignment:
return α

select some variable v for which α is not defined

for each d ∈ dom(v) in some order:
α′ := α ∪ {v 7→ d}
α′′ := NaiveBacktracking(C, α′)
if α′′ ̸= inconsistent:

return α′′

return inconsistent
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Variable Orders

▶ Backtracking does not specify in which order
variables are considered for assignment.

▶ Such orders can strongly influence the search space size
and hence the search performance.
⇝ example: exercises

▶ Eventually we have to assign all variables
⇝ prefer critical assignments (fail early)

German: Variablenordnung
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Value Orders

▶ Backtracking does not specify in which order
the values of the selected variable v are considered.

▶ This is not as important because it does not matter
in subtrees without a solution. (Why not?)

▶ If there is a solution in the subtree, then ideally
a value that leads to a solution should be chosen.
⇝ prefer promising assignments

German: Werteordnung
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Static vs. Dynamic Orders

we distinguish:

▶ static orders (fixed prior to search)

▶ dynamic orders (selected variable or value order
depends on the search state)

comparison:

▶ dynamic orders obviously more powerful

▶ static orders ⇝ no computational overhead during search

The following ordering criteria can be used statically, but are more
effective combined with inference (⇝ later) and used dynamically.
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Variable Orders

two common variable ordering criteria:

▶ minimum remaining values:
prefer variables that have small domains
▶ intuition: few subtrees ⇝ smaller tree
▶ extreme case: only one value ⇝ forced assignment

▶ most constraining variable:
prefer variables contained in many nontrivial constraints
▶ intuition: constraints tested early
⇝ inconsistencies recognized early ⇝ smaller tree

combination: use minimum remaining values criterion,
then most constraining variable criterion to break ties
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Value Orders

Definition (conflict)

Let C = ⟨V , dom, (Ruv )⟩ be a constraint network.
For variables v ̸= v ′ and values d ∈ dom(v), d ′ ∈ dom(v ′),
the assignment v 7→ d is in conflict with v ′ 7→ d ′ if ⟨d , d ′⟩ /∈ Rvv ′ .

value ordering criterion for partial assignment α
and selected variable v :

▶ minimum conflicts: prefer values d ∈ dom(v)
such that v 7→ d causes as few conflicts as possible
with variables that are unassigned in α
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D3.4 Summary
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Summary: Backtracking

basic search algorithm for constraint networks: backtracking

▶ extends the (initially empty) partial assignment step by step
until an inconsistency or a solution is found

▶ is a form of depth-first search

▶ depth-first search particularly well-suited
because state space is directed tree
and all solutions at same (known) depth
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Summary: Variable and Value Orders

▶ Variable orders influence the performance
of backtracking significantly.
▶ goal: critical decisions as early as possible

▶ Value orders influence the performance
of backtracking on solvable constraint networks significantly.
▶ goal: most promising assignments first
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