## Foundations of Artificial Intelligence B15. State-Space Search: Properties of A\*, Part II

Malte Helmert

University of Basel

March 31, 2025

## Foundations of Artificial Intelligence

March 31, 2025 — B15. State-Space Search: Properties of A\*, Part II

B15.1 Introduction

B15.2 Monotonicity Lemma

B15.3 Optimality of A\* without Reopening

B15.4 Time Complexity of A\*

B15.5 Summary

#### State-Space Search: Overview

#### Chapter overview: state-space search

- ▶ B1–B3. Foundations
- ▶ B4–B8. Basic Algorithms
- ▶ B9–B15. Heuristic Algorithms
  - B9. Heuristics
  - ▶ B10. Analysis of Heuristics
  - ▶ B11. Best-first Graph Search
  - ▶ B12. Greedy Best-first Search, A\*, Weighted A\*
  - ► B13. IDA\*
  - ▶ B14. Properties of A\*, Part I
  - ▶ B15. Properties of A\*, Part II

B15. State-Space Search: Properties of A\*, Part II

## B15.1 Introduction

### Optimality of A\* without Reopening

#### We now study A\* without reopening.

- ► For A\* without reopening, admissibility and consistency together guarantee optimality.
- We prove this on the following slides, again beginning with a basic lemma.
- ► Either of the two properties on its own would not be sufficient for optimality. (How would one prove this?)

## Reminder: A\* without Reopening

#### reminder from Chapter B11/B12: A\* without reopening

```
A* without Reopening
open := new MinHeap ordered by \langle f, h \rangle
if h(\text{init}()) < \infty:
     open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
     n := open.pop_min()
     if n.state ∉ closed:
           closed.insert(n)
           if is_goal(n.state):
                 return extract_path(n)
           for each \langle a, s' \rangle \in \text{succ}(n.\text{state}):
                if h(s') < \infty:
                      n' := \mathsf{make\_node}(n, a, s')
                      open.insert(n')
return unsolvable
```

# B15.2 Monotonicity Lemma

## A\*: Monotonicity Lemma (1)

#### Lemma (monotonicity of A\* with consistent heuristics)

Consider A\* with a consistent heuristic.

#### Then:

- If n' is a child node of n, then  $f(n') \geq f(n)$ .
- ② On all paths generated by A\*, f values are non-decreasing.
- The sequence of f values of the nodes expanded by A\* is non-decreasing.

German: Monotonielemma

## A\*: Monotonicity Lemma (2)

#### Proof.

#### on 1.:

Let n' be a child node of n via action a.

Let s = n.state, s' = n'.state.

- by definition of f: f(n) = g(n) + h(s), f(n') = g(n') + h(s')
- ▶ by definition of g: g(n') = g(n) + cost(a)
- ▶ by consistency of h:  $h(s) \le cost(a) + h(s')$

$$f(n) = g(n) + h(s) \le g(n) + cost(a) + h(s')$$
  
=  $g(n') + h(s') = f(n')$ 

on 2.: follows directly from 1.

## A\*: Monotonicity Lemma (3)

# Proof (continued). on 3:

- Let  $f_b$  be the minimal f value in open at the beginning of a **while** loop iteration in  $A^*$ . Let n be the removed node with  $f(n) = f_b$ .
- ▶ to show: at the end of the iteration the minimal f value in open is at least f<sub>b</sub>.
- ▶ We must consider the operations modifying open: open.pop\_min and open.insert.
- ▶ open.pop\_min can never decrease the minimal f value in open (only potentially increase it).
- The nodes n' added with *open*.insert are children of n and hence satisfy  $f(n') \ge f(n) = f_b$  according to part 1.



# B15.3 Optimality of A\* without Reopening

## Optimality of A\* without Reopening

#### Theorem (optimality of A\* without reopening)

A\* without reopening is optimal when using an admissible and consistent heuristic.

#### Proof.

From the monotonicity lemma, the sequence of f values of nodes removed from the open list is non-decreasing.

- → If multiple nodes with the same state s are removed
  from the open list, then their g values are non-decreasing.
- → If we allowed reopening, it would never happen.
- $\longrightarrow$  With consistent heuristics,  $A^*$  without reopening behaves the same way as  $A^*$  with reopening.

The result follows because A\* with reopening and admissible heuristics is optimal.



# B15.4 Time Complexity of A\*

## Time Complexity of A\* (1)

#### What is the time complexity of $A^*$ ?

- depends strongly on the quality of the heuristic
- ightharpoonup an extreme case: h = 0 for all states
  - → A\* identical to uniform cost search
- ▶ another extreme case:  $h = h^*$  and cost(a) > 0 for all actions a
  - → A\* only expands nodes along an optimal solution
  - $\rightarrow$   $O(\ell^*)$  expanded nodes,  $O(\ell^*b)$  generated nodes, where
    - $\triangleright$   $\ell^*$ : length of the found optimal solution
    - b: branching factor

## Time Complexity of A\* (2)

#### more precise analysis:

dependency of the runtime of A\* on heuristic error

#### example:

- unit cost problems with
- constant branching factor and
- ▶ constant absolute error:  $|h^*(s) h(s)| \le c$  for all  $s \in S$

#### time complexity:

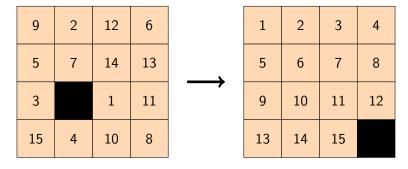
- ▶ if state space is a tree: time complexity of A\* grows linearly in solution length (Pohl 1969; Gaschnig 1977)
- ▶ general search spaces: runtime of A\* grows exponentially in solution length (Helmert & Röger 2008)

## Overhead of Reopening

#### How does reopening affect runtime?

- For most practical state spaces and inconsistent admissible heuristics, the number of reopened nodes is negligible.
- exceptions exist: Martelli (1977) constructed state spaces with n states where exponentially many (in n) node reopenings occur in A\*. (~ exponentially worse than uniform cost search)

## Practical Evaluation of A\* (1)



 $h_1$ : number of tiles in wrong cell (misplaced tiles)

 $h_2$ : sum of distances of tiles to their goal cell (Manhattan distance)

## Practical Evaluation of A\* (2)

- experiments with random initial states, generated by random walk from goal state
- entries show median of number of generated nodes for 101 random walks of the same length N

|     | generated nodes |                  |                        |
|-----|-----------------|------------------|------------------------|
| N   | BFS-Graph       | $A^*$ with $h_1$ | A* with h <sub>2</sub> |
| 10  | 63              | 15               | 15                     |
| 20  | 1,052           | 28               | 27                     |
| 30  | 7,546           | 77               | 42                     |
| 40  | 72,768          | 227              | 64                     |
| 50  | 359,298         | 422              | 83                     |
| 60  | > 1,000,000     | 7,100            | 307                    |
| 70  | > 1,000,000     | 12,769           | 377                    |
| 80  | > 1,000,000     | 62,583           | 849                    |
| 90  | > 1,000,000     | 162,035          | 1,522                  |
| 100 | > 1,000,000     | 690,497          | 4,964                  |

B15. State-Space Search: Properties of A\*, Part II

# B15.5 Summary

## Summary

- ► A\* without reopening using an admissible and consistent heuristic is optimal
- key property monotonicity lemma (with consistent heuristics):
  - ightharpoonup f values never decrease along paths considered by  $A^*$
  - sequence of f values of expanded nodes is non-decreasing
- time complexity depends on heuristic and shape of state space
  - precise details complex and depend on many aspects
  - reopening increases runtime exponentially in degenerate cases, but usually negligible overhead
  - small improvements in heuristic values often lead to exponential improvements in runtime