Foundations of Artificial Intelligence B14. State-Space Search: Properties of A*, Part I

Malte Helmert

University of Basel

March 31, 2025

Chapter overview: state-space search

- B1–B3. Foundations.
- B4–B8. Basic Algorithms
- B9–B15. Heuristic Algorithms
 - B9. Heuristics
 - B10. Analysis of Heuristics
 - B11. Best-first Graph Search
 - B12. Greedy Best-first Search, A*, Weighted A*
 - B13. IDA*
 - B14. Properties of A*, Part I
 - B15. Properties of A*, Part II

Introduction

Introduction

Optimality of A*

- advantage of A* over greedy search:
 optimal for heuristics with suitable properties
- very important result!
- → next chapters: a closer look at A*
 - A* with reopening → this chapter
 - A* without reopening → next chapter

In this chapter, we prove that A* with reopening is optimal when using admissible heuristics.

For this purpose, we

Introduction

- give some basic definitions
- prove two lemmas regarding the behaviour of A*
- use these to prove the main result

Reminder: A* with Reopening

reminder from Chapter B11/B12: A* with reopening

```
A* with Reopening
```

```
open := new MinHeap ordered by \langle f, h \rangle
if h(\text{init}()) < \infty:
     open.insert(make_root_node())
distances := new HashMap
while not open.is_empty():
     n := open.pop_min()
     if distances.lookup(n.state) = none or <math>g(n) < distances[n.state]:
           distances[n.state] := g(n)
           if is_goal(n.state):
                 return extract_path(n)
           for each \langle a, s' \rangle \in \text{succ}(n.\text{state}):
                if h(s') < \infty:
                      n' := \mathsf{make\_node}(n, a, s')
                      open.insert(n')
return unsolvable
```

Solvable States

Definition (solvable)

A state s of a state space is called solvable if $h^*(s) < \infty$.

German: lösbar

Definition (g^*)

Introduction

Let s be a state of a state space with initial state s_1 .

We write $g^*(s)$ for the cost of an optimal (cheapest) path from s_1 to s (∞ if s is unreachable).

Remarks:

- g is defined for nodes, g* for states (Why?)
- $g^*(n.state) \le g(n)$ for all nodes n generated by a search algorithm (Why?)

Settled States in A*

Definition (settled)

A state s is called settled at a given point during the execution of A* (with or without reopening) if s is included in distances and distances[s] = $g^*(s)$.

German: erledigt

Optimal Continuation Lemma

Optimal Continuation Lemma

We now show the first important result for A* with reopening:

Lemma (optimal continuation lemma)

Consider A* with reopening using a safe heuristic at the beginning of any iteration of the while loop.

If

- state s is settled.
- state s' is a solvable successor of s, and
- an optimal path from s_1 to s' of the form $\langle s_1, \ldots, s, s' \rangle$ exists,

then

- s' is settled or
- open contains a node n' with n'.state = s' and $g(n') = g^*(s')$.

German: Optimale-Fortsetzungs-Lemma

(Proof follows on the next slides.)

Intuitively, the lemma states:

If no optimal path to a given state has been found yet, open must contain a "good" node that contributes to finding an optimal path to that state.

(This potentially requires multiple applications of the lemma along an optimal path to the state.)

Proof.

Consider states s and s' with the given properties at the start of some iteration ("iteration A") of A*.

Proof.

Consider states s and s' with the given properties at the start of some iteration ("iteration A") of A*.

Because s is settled, an earlier iteration ("iteration B") set $distances[s] := g^*(s)$.

Proof.

Consider states s and s' with the given properties at the start of some iteration ("iteration A") of A*.

Because s is settled, an earlier iteration ("iteration B") set $distances[s] := g^*(s)$.

Thus iteration B removed a node n with n.state = s and $g(n) = g^*(s)$ from open.

Proof.

Consider states s and s' with the given properties at the start of some iteration ("iteration A") of A*.

Because s is settled, an earlier iteration ("iteration B") set $distances[s] := g^*(s)$.

Thus iteration B removed a node nwith n.state = s and $g(n) = g^*(s)$ from open.

A* did not terminate in iteration B. (Otherwise iteration A would not exist.) Hence *n* was expanded in iteration B.

Proof (continued).

This expansion considered the successor s' of s.

Because s' is solvable, we have $h^*(s') < \infty$.

Because h is safe, this implies $h(s') < \infty$.

Hence a successor node n' was generated for s'.

Proof (continued).

This expansion considered the successor s' of s.

Because s' is solvable, we have $h^*(s') < \infty$.

Because h is safe, this implies $h(s') < \infty$.

Hence a successor node n' was generated for s'.

This node n' satisfies the consequence of the lemma.

Hence the criteria of the lemma were satisfied for s and s'after iteration B.

Proof (continued).

This expansion considered the successor s' of s.

Because s' is solvable, we have $h^*(s') < \infty$.

Because h is safe, this implies $h(s') < \infty$.

Hence a successor node n' was generated for s'.

This node n' satisfies the consequence of the lemma. Hence the criteria of the lemma were satisfied for s and s'after iteration B.

To complete the proof, we show: if the consequence of the lemma is satisfied at the beginning of an iteration, it is also satisfied at the beginning of the next iteration.

Proof (continued).

• If s' is settled at the beginning of an iteration, it remains settled until termination.

Proof (continued).

- If s' is settled at the beginning of an iteration, it remains settled until termination.
- If s' is not yet settled and *open* contains a node n' with n'.state = s' and $g(n') = g^*(s')$ at the beginning of an iteration, then either the node remains in *open* during the iteration, or n' is removed during the iteration and s' becomes settled.

f-Bound Lemma

f-Bound Lemma

We need a second lemma:

Lemma (f-bound lemma)

Consider A* with reopening and an admissible heuristic applied to a solvable state space with optimal solution cost c^* .

Then open contains a node n with $f(n) < c^*$ at the beginning of each iteration of the while loop.

German: f-Schranken-Lemma

Proof.

Consider the situation at the beginning of any iteration of the **while** loop.

Let $\langle s_0,\ldots,s_n\rangle$ with $s_0:=s_l$ be an optimal solution. (Here we use that the state space is solvable.)

Proof.

Consider the situation at the beginning of any iteration of the **while** loop.

Let $\langle s_0, \ldots, s_n \rangle$ with $s_0 := s_1$ be an optimal solution. (Here we use that the state space is solvable.)

Let s_i be the first state in the sequence that is not settled.

(Not all states in the sequence can be settled: s_n is a goal state, and when a goal state is inserted into distances, A* terminates.)

Proof (continued).

Case 1: i = 0

Because $s_0 = s_1$ is not settled yet, we are at the first iteration of the **while** loop.

Proof (continued).

Case 1: i = 0

Because $s_0 = s_1$ is not settled yet, we are at the first iteration of the **while** loop.

Because the state space is solvable and h is admissible, we have $h(s_0) < \infty$.

Proof (continued).

Case 1: i = 0

Because $s_0 = s_1$ is not settled yet, we are at the first iteration of the **while** loop.

Because the state space is solvable and h is admissible, we have $h(s_0) < \infty$.

Hence *open* contains the root n_0 .

Proof (continued).

Case 1: i = 0

Because $s_0 = s_1$ is not settled yet, we are at the first iteration of the **while** loop.

Because the state space is solvable and h is admissible, we have $h(s_0) < \infty$.

Hence *open* contains the root n_0 .

We obtain: $f(n_0) = g(n_0) + h(s_0) = 0 + h(s_0) \le h^*(s_0) = c^*$, where "<" uses the admissibility of h.

This concludes the proof for this case.

Proof (continued).

Case 2: i > 0

Then s_{i-1} is settled and s_i is not settled.

Moreover, s_i is a solvable successor of s_{i-1} and $\langle s_0, \ldots, s_{i-1}, s_i \rangle$ is an optimal path from s_0 to s_i .

Proof (continued).

Case 2: i > 0

Then s_{i-1} is settled and s_i is not settled.

Moreover, s_i is a solvable successor of s_{i-1} and $\langle s_0, \ldots, s_{i-1}, s_i \rangle$ is an optimal path from s_0 to s_i .

We can hence apply the optimal continuation lemma (with $s=s_{i-1}$ and $s'=s_i$) and obtain:

- (A) s_i is settled, or
- (B) open contains n' with n'.state $= s_i$ and $g(n') = g^*(s_i)$.

Proof (continued).

Case 2: i > 0

Then s_{i-1} is settled and s_i is not settled.

Moreover, s_i is a solvable successor of s_{i-1} and $\langle s_0, \ldots, s_{i-1}, s_i \rangle$ is an optimal path from s_0 to s_i .

We can hence apply the optimal continuation lemma (with $s = s_{i-1}$ and $s' = s_i$) and obtain:

- (A) s_i is settled, or
- (B) open contains n' with n'.state $= s_i$ and $g(n') = g^*(s_i)$.

Because (A) is false, (B) must be true.

Proof (continued).

Case 2: i > 0

Then s_{i-1} is settled and s_i is not settled.

Moreover, s_i is a solvable successor of s_{i-1} and $\langle s_0, \ldots, s_{i-1}, s_i \rangle$ is an optimal path from s_0 to s_i .

We can hence apply the optimal continuation lemma (with $s = s_{i-1}$ and $s' = s_i$) and obtain:

- (A) s_i is settled, or
- (B) open contains n' with n' state $= s_i$ and $g(n') = g^*(s_i)$.

Because (A) is false, (B) must be true.

We conclude: open contains n' with

$$f(n') = g(n') + h(s_i) = g^*(s_i) + h(s_i) \le g^*(s_i) + h^*(s_i) = c^*$$
, where "<" uses the admissibility of h .

Optimality of A* with Reopening

We can now show the main result of this chapter:

Theorem (optimality of A* with reopening)

A* with reopening is optimal when using an admissible heuristic.

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c^* where A^* with reopening and an admissible heuristic returns a solution with cost $c > c^*$.

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c^* where A^* with reopening and an admissible heuristic returns a solution with cost $c > c^*$.

This means that in the last iteration, the algorithm removes a node n with $g(n) = c > c^*$ from open.

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c^* where A^* with reopening and an admissible heuristic returns a solution with cost $c > c^*$.

This means that in the last iteration, the algorithm removes a node n with $g(n) = c > c^*$ from open.

With h(n.state) = 0 (because h is admissible and hence goal-aware), this implies:

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c^* where A^* with reopening and an admissible heuristic returns a solution with cost $c > c^*$.

This means that in the last iteration, the algorithm removes a node n with $g(n) = c > c^*$ from open.

With h(n.state) = 0 (because h is admissible and hence goal-aware), this implies:

$$f(n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c^*.$$

Proof.

By contradiction: assume that the theorem is wrong.

Hence there is a state space with optimal solution cost c^* where A* with reopening and an admissible heuristic returns a solution with cost $c > c^*$.

This means that in the last iteration, the algorithm removes a node n with $g(n) = c > c^*$ from open.

With h(n.state) = 0 (because h is admissible and hence goal-aware), this implies:

$$f(n) = g(n) + h(n.state) = g(n) + 0 = g(n) = c > c^*.$$

 A^* always removes a node n with minimal f value from open. With $f(n) > c^*$, we get a contradiction to the f-bound lemma, which completes the proof.

Summary

- A* with reopening using an admissible heuristic is optimal.
- The proof is based on the following lemmas that hold for solvable state spaces and admissible heuristics:
 - optimal continuation lemma: The open list always contains nodes that make progress towards an optimal solution.
 - f-bound lemma: The minimum f value in the open list at the beginning of each A* iteration is a lower bound on the optimal solution cost.